首页> 外文期刊>Journal of Sound and Vibration >Tuning fork microgyrometers: Narrow gap vs. wide gap design
【24h】

Tuning fork microgyrometers: Narrow gap vs. wide gap design

机译:音叉微陀螺仪:窄间隙与宽间隙设计

获取原文
获取原文并翻译 | 示例
           

摘要

We analyse the performances of two different configurations of a tuning fork microgyrometer, the so called 'wide gap' design and 'narrow gap' design. In the former case the air gap between the vibrating forks and the walls of the surrounding frame is so large that the air flow around each fork is not influenced by the presence of the frame itself. This geometrical configuration results in a very low air damping, and, hence, allows the instrument to operate at atmospheric pressure. In the case of 'narrow gap' design the distance between the forks and the frame walls is instead very small. As a consequence, the instrument needs to operate under very low pressure conditions, since, at higher pressures, the presence of a thin layer of air would increase the air damping to very large values, and would not allow the correct operation of the instrument. Although the requirement of low pressure conditions represents a drawback of the narrow gap solution, we show that this instrument configuration, when compared to the wide gap design, allows to achieve a significantly smaller dynamic error and a significantly wider range of linearity. Indeed the thickness of the air gap represents an additional parameter that can be adjusted by the designer to optimise the performances of the instrument. An accurate analytical model of the sensor is presented in the paper, which constitutes a helpful designing tool for this kind of device. In particular we focus the attention on the two tines of the drive mode, which are indeed the structural components that more than others influence the instrument performances. We show that the optimal design of these fundamental elements can be obtained by neglecting the interaction with the remaining part of the sensor structure, and show how to design the instrument to minimise the amplitude error. The influence of air damping, structural damping and geometry on the system response in terms of bandwidth and dynamic error is also investigated.
机译:我们分析了音叉微陀螺仪的两种不同配置的性能,即所谓的“宽间隙”设计和“窄间隙”设计。在前一种情况下,振动叉与周围框架壁之间的气隙太大,以致于每个叉周围的空气流不受框架本身的存在的影响。这种几何构造导致非常低的空气阻尼,因此使仪器可以在大气压下运行。在“窄间隙”设计中,货叉和车架壁之间的距离很小。结果,该仪器需要在非常低的压力条件下操作,因为在较高的压力下,薄薄的空气层的存在会使空气阻尼增加到非常大的值,并且将无法正确操作该仪器。尽管对低压条件的要求代表了窄间隙解决方案的缺点,但我们表明,与宽间隙设计相比,这种仪器配置可实现显着较小的动态误差和显着较大的线性范围。实际上,气隙的厚度代表了一个附加参数,设计人员可以对其进行调整以优化仪器的性能。本文提出了一种精确的传感器分析模型,它构成了此类设备的有用设计工具。特别是,我们将注意力集中在驱动模式的两个方面,它们确实是比其他因素影响仪器性能的结构组件。我们展示了可以通过忽略与传感器结构其余部分的相互作用来获得这些基本元件的最佳设计,并展示如何设计仪器以最小化幅度误差。还研究了空气阻尼,结构阻尼和几何形状对系统响应的带宽和动态误差的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号