首页> 外文期刊>Journal of Sound and Vibration >2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures
【24h】

2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures

机译:二维差分正交解,用于功能梯度圆锥,圆柱壳和环形板结构的振动分析

获取原文
获取原文并翻译 | 示例
           

摘要

This paper focuses on the dynamic behavior of functionally graded conical, cylindrical shells and annular plates. The last two structures are obtained as special cases of the conical shell formulation. The first-order shear deformation theory (FSDT) is used to analyze the above moderately thick structural elements. The treatment is developed within the theory of linear elasticity, when materials are assumed to be isotropic and inhomogeneous through the thickness direction. The two-constituent functionally graded shell consists of ceramic and metal that are graded through the thickness, from one surface of the shell to the other. Two different power-law distributions are considered for the ceramic volume fraction. The homogeneous isotropic material is inferred as a special case of functionally graded materials (FGM). The governing equations of motion, expressed as functions of five kinematic parameters, are discretized by means of the generalized differential quadrature (GDQ) method. The discretization of the system leads to a standard linear eigenvalue problem, where two independent variables are involved without using the Fourier modal expansion methodology. For the homogeneous isotropic special case, numerical solutions are compared with the ones obtained using commercial programs such as Abaqus, Ansys, Nastran, Straus, Pro/Mechanica. Very good agreement is observed. Furthermore, the convergence rate of natural frequencies is shown to be very fast and the stability of the numerical methodology is very good. Different typologies of non-uniform grid point distributions are considered. Finally, for the functionally graded material case numerical results illustrate the influence of the power-law exponent and of the power-law distribution choice on the mechanical behavior of shell structures.
机译:本文着重于功能梯度圆锥形圆柱壳和环形板的动力学行为。作为圆锥壳配方的特殊情况,获得了最后两个结构。一阶剪切变形理论(FSDT)用于分析上述中等厚度的结构单元。当假定材料在厚度方向上是各向同性且不均匀时,该处理是在线性弹性理论内开发的。两成分功能梯度外壳由陶瓷和金属组成,这些陶瓷和金属从外壳的一个表面到另一个表面,通过厚度进行渐变。陶瓷体积分数考虑了两种不同的幂律分布。均质各向同性材料是功能梯度材料(FGM)的特例。运动的控制方程,表示为五个运动学参数的函数,通过广义差分正交(GDQ)方法离散化。系统的离散化导致一个标准的线性特征值问题,其中涉及两个自变量而不使用傅里叶模态展开方法。对于均质各向同性的特殊情况,将数值解与使用商业程序(例如Abaqus,Ansys,Nastran,Straus,Pro / Mechanica)获得的解进行比较。观察到非常好的一致性。此外,自然频率的收敛速度非常快,数值方法的稳定性也很好。考虑了非均匀网格点分布的不同类型。最后,对于功能梯度材料的情况,数值结果说明了幂律指数和幂律分布选择对壳体结构力学行为的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号