首页> 外文期刊>Journal of solid state electrochemistry >Mechanism of aluminium and oxygen ions transport in the barrier layer of porous anodic alumina films
【24h】

Mechanism of aluminium and oxygen ions transport in the barrier layer of porous anodic alumina films

机译:铝和氧离子在多孔阳极氧化铝膜阻挡层中的迁移机理

获取原文
获取原文并翻译 | 示例
           

摘要

Aluminium was anodised in oxalic acid electrolyte at concentrations 0.125-0.5 M, current densities 25- 100 Am ~(-2) and low temperatures 0 and 5 °C. The efficiencies of Al consumption and oxide production in the metal| oxide interface and the transport numbers of Al ~(3+) and O ~(2-) in the barrier layer of porous anodic alumina films were determined. The Al consumption efficiency essentially coincides with that by Faraday's law while that of oxygen evolution, visually detected at these temperatures, is negligible. The oxide production efficiency and O ~(2-) transport number decrease with temperature, increase with current density and are almost independent of electrolyte concentration. The transport numbers combined with literature ones for oxalate and sulphuric acid electrolytes were treated by high field kinetic equations describing independent Al ~(3+) and O ~(2-) transport to penetrate its mechanism. The half jump activation distances were found comparable to ions radii. This mechanism embraces two steps, equilibrium established between ordinary oxide lattice hardly allowing transport and locally emerging transformed structure dispersed in barrier layer consisting of pairs of Al ~(3+) and O ~(2-) clusters enabling transport and the rate-controlling step of actual ion transport within clusters. The transformed structure then returns to ordinary while it emerges at other sites. The real activation energy of Al ~(3+) transport is higher than that of O ~(2-), e.g. by ≈19 kJ mol ~(-1) at low current densities, but the fraction of really mobile Al ~(3+) is ≈10 ~3-10 ~4 times larger than that of O ~(2-) justifying the not excessively different values of O ~(2-) and Al ~(3+) transport numbers.
机译:铝在草酸电解质中以0.125-0.5 M的浓度进行阳极氧化,电流密度为25-100 Am〜(-2),并且在0和5°C的低温下进行阳极氧化。金属中铝的消耗效率和氧化物的产生|确定了多孔阳极氧化铝膜阻挡层中的氧化物界面和Al〜(3+)和O〜(2-)的迁移数。铝的消耗效率与法拉第定律基本吻合,而在这些温度下肉眼观察到的氧气释放效率可以忽略不计。氧化物的生产效率和O〜(2-)的迁移数随温度而降低,随电流密度而增加,并且几乎与电解质浓度无关。用高场动力学方程处理草酸盐和硫酸电解质的输运数,结合文献中的输运数,描述了独立的Al〜(3+)和O〜(2-)输运机理。发现半跳激活距离与离子半径相当。该机制包括两个步骤:在普通氧化物晶格难以迁移之间建立平衡,以及分散在由成对的Al〜(3+)和O〜(2-)簇对组成的势垒层中的局部出现的转变结构,以及速率控制步骤簇内实际离子传输的过程然后,转换后的结构在其他站点出现时将恢复正常状态。 Al〜(3+)传输的真实活化能高于O〜(2-)的真实活化能,例如。在低电流密度下约≈19 kJ mol〜(-1),但真正可移动的Al〜(3+)的分数是O〜(2-)的约10〜3-10〜4倍,证明了不O〜(2-)和Al〜(3+)的传输数差异太大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号