首页> 外文期刊>Journal of separation science. >Fast, noninvasive and simultaneous near-infrared spectroscopic characterisation of physicochemical stationary phases' properties: From silica particles towards monoliths
【24h】

Fast, noninvasive and simultaneous near-infrared spectroscopic characterisation of physicochemical stationary phases' properties: From silica particles towards monoliths

机译:物理化学固定相性质的快速,无创和同时近红外光谱表征:从二氧化硅颗粒到整体

获取原文
获取原文并翻译 | 示例
           

摘要

The design of novel stationary phases is a permanent demanding challenge in chromatographic separation science to enable analysis with enhanced selectivity, specificity and speed. Therefore, the characterisation of chemical and physical properties is next to calculation of chromatographic parameters essential. Conventionally, chemical parameters including surface coverage are determined by burning combustion or frontal analysis, physical parameters including particle size, pore size, pore volume and surface area are determined by SEM, mercury intrusion porosimetry (MIP) and Brunauer-Emmett-Teller (BET). All these methods are time consuming, invasive and require besides special equipment some special trained laboratory staff. Therefore, we introduced near-infrared spectroscopy (NIRS) as a noninvasive, easy-to-handle technology with wavenumber ranging from 4000 to 10 000 cm(-1) enabling analysis within only a few seconds at higher precision than the conventional methods. Investigated materials comprise porous and nonporous silica gel, carbon-based nanomaterials (fullerenes), polymer beads and monoliths. Different carriers themselves and their kind of derivatisations (RP, normal-phase, ion-exchanger, IMAC (immobilised metal affinity chromatography), affinity) can be determined by applying principal component analysis (PCA) of recorded spectra. Partial least square regression (PLSR) enables the determination of particle size, pore size, pore volume, porosity, total porosity and surface area with one single measurement. For the optimised design of well-defined polymer beads and monoliths, real-time in situ monitoring to control, e.g. particle and pore sizes as well as monomer content during the polymerisation process, can be extremely helpful. In this article, the advantages of this fast, noninvasive high-throughput NIRS methods are summarised, discussed in detail and different applications of the individual characterised materials are shown.
机译:新型固定相的设计是色谱分离科学领域的一项永久性挑战,要使其分析具有更高的选择性,特异性和速度。因此,化学和物理性质的表征仅次于色谱参数的计算。常规地,包括表面覆盖率的化学参数是通过燃烧燃烧或正面分析来确定的,包括粒径,孔径,孔容和表面积的物理参数是通过SEM,压汞法(MIP)和Brunauer-Emmett-Teller(BET)来确定的。所有这些方法都是耗时,具有侵入性的,并且除了特殊设备外还需要一些经过特殊培训的实验室人员。因此,我们引入了近红外光谱(NIRS)作为一种无创,易于处理的技术,波数范围从4000到10000 cm(-1),与传统方法相比,能够在几秒钟内以更高的精度进行分析。研究的材料包括多孔和无孔硅胶,碳基纳米材料(富勒烯),聚合物珠粒和整料。可以通过应用记录光谱的主成分分析(PCA)来确定不同的载体本身及其衍生形式(RP,正相,离子交换器,IMAC(固定金属亲和色谱),亲和力)。偏最小二乘回归(PLSR)可以通过一次测量确定粒径,孔径,孔体积,孔隙率,总孔隙率和表面积。为了优化设计明确定义的聚合物珠粒和整体结构,需要实时进行原位监测以控制例如聚合过程中的粒径和孔径以及单体含量可能非常有帮助。在本文中,对这种快速,无创的​​高通量NIRS方法的优点进行了概述,详细讨论,并显示了各个特征材料的不同应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号