...
首页> 外文期刊>Journal of Quantitative Spectroscopy & Radiative Transfer >Inhomogeneity structure and the applicability of effective medium approximations in calculating light scattering by inhomogeneous particles
【24h】

Inhomogeneity structure and the applicability of effective medium approximations in calculating light scattering by inhomogeneous particles

机译:非均匀结构和有效介质近似在计算非均匀粒子光散射中的适用性

获取原文
获取原文并翻译 | 示例
           

摘要

Atmospheric aerosols commonly occur as inhomogeneous particles with significant internal variations of refractive indices. For the purpose of light-scattering calculations, effective medium approximations (EMAs) have been developed that seek to model an inhomogeneous particle with an internal variation of refractive index using a homogeneous particle with a single "effective" refractive index, one whose value is expected to yield approximately the same scattering properties. Here the applicability of four EMAs is investigated in the relatively simple case that the particle is a mixture of materials having just two different indices of refraction, and consideration is given to the effects of the spatial arrangement of these on the reliability of results obtained using the EMAs. The EMAs considered are based on the Bruggeman theory, the Maxwell-Garnett theory, and two different Wiener bounds. The mixing states considered are relatively regular forms of "layering," as well as states that involve varying degrees of more irregular "mixing." Just two overall particle shapes are considered: spheres and spheroids. For each inhomogeneous particle two sets of scattering calculations are performed: calculations treating the inhomogeneous particle itself exactly, and calculations treating an effective homogeneous particle with the same shape and size but a single refractive index determined using one of the EMAs. The first kind is done using the core-mantle Mie theory in the case of stratified composition and the pseudo-spectral time-domain method in the more irregular mixing cases. The second kind of calculation is done using the Lorenz-Mie or T-matrix method.
机译:大气气溶胶通常以不均匀的颗粒形式存在,其内部折射率存在显着变化。为了进行光散射计算,已经开发出有效的介质近似值(EMA),该模型试图使用具有单个“有效”折射率的均质粒子模拟具有内部折射率变化的不均匀粒子。产生大致相同的散射特性。在此,在相对简单的情况下研究了四种EMA的适用性,即粒子是仅具有两种不同折射率的材料的混合物,并考虑了这些EMA的空间排列对使用该方法获得的结果的可靠性的影响。 EMA。所考虑的EMA基于Bruggeman理论,Maxwell-Garnett理论和两个不同的Wiener界限。所考虑的混合状态是相对规则的“分层”形式,以及涉及不同程度的更不规则“混合”的状态。仅考虑了两个整体粒子形状:球体和椭球体。对于每个非均质粒子,执行两组散射计算:精确地处理非均质粒子本身的计算,以及处理具有相同形状和大小但使用其中一个EMA确定的单一折射率的有效均质粒子的计算。第一种是在分层组成的情况下使用核幔Mie理论完成的,在更不规则的混合情况下使用伪谱时域方法完成的。第二种计算是使用Lorenz-Mie或T-矩阵方法完成的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号