...
【24h】

Resonance Raman spectroscopic study for radial vibrational modes in ultra- thin walled TiO2 nanotubes

机译:共振拉曼光谱研究超薄壁TiO2纳米管的径向振动模式

获取原文
获取原文并翻译 | 示例
           

摘要

The study reports the observation of radial vibrational modes in ultra-thin walled anatase TiO2 nanotube powders grown by rapid breakdown anodization technique using resonant Raman spectroscopic study. The as-grown tubes in the anatase phase are around 2-5nm in wall thickness, 15-18nm in diameter and few microns in length. The E-g(1,E-5,E-6) phonon modes with molecular vibrations in the radial direction are predominant in the resonance Raman spectroscopy using 325nm He-Cd excitation. Multi-phonons including overtones and combinational modes of E-g(1,E-5,E-6) are abundantly observed. Frohlich interaction owing to electron-phonon coupling in the resonance Raman spectroscopy of ultra-thin wall nanotubes is responsible for the observation of radial vibrational modes. Finite size with large surface energy in these nanotubes energetically favor only one mode, B-1g(4) with unidirectional molecular vibrations in the parallel configuration out of the three Raman modes with molecular vibration normal to the radial modes. Enhanced specific heat with increasing temperatures in these nanotubes as compared to that reported for nanoparticles of similar diameter may possibly be related to the presence of the prominent radial mode along with other energetic phonon mode. The findings elucidate the understanding of total energy landscape for TiO2 nanotubes. Copyright (c) 2015 John Wiley & Sons, Ltd.
机译:该研究报告了使用共振拉曼光谱研究通过快速击穿阳极氧化技术生长的超薄壁锐钛矿型TiO2纳米管粉末的径向振动模式的观察。锐钛矿阶段生长的管的壁厚约为2-5nm,直径为15-18nm,长度为几微米。在使用325nm He-Cd激发的共振拉曼光谱中,具有沿径向方向的分子振动的E-g(1,E-5,E-6)声子模式占主导地位。大量观察到了包括E-g(1,E-5,E-6)的泛音和组合模式在内的多声子。超薄壁纳米管的共振拉曼光谱中的电子-声子耦合引起的Frohlich相互作用负责观察径向振动模式。这些纳米管中具有大表面能的有限尺寸在能量上仅支持一种模式,即B-1g(4)具有三个平行于径向模式的分子振动的拉曼模式中具有平行配置的单向分子振动。与报道的相似直径的纳米颗粒相比,这些纳米管中随着温度升高而提高的比热可能与突出的径向模式以及其他高能声子模式的存在有关。这些发现阐明了对TiO2纳米管总能量分布的理解。版权所有(c)2015 John Wiley&Sons,Ltd.

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号