...
【24h】

A comparison of noise models in a hybrid reference spectrum and principal components analysis algorithm for Raman spectroscopy

机译:混合参考光谱中的噪声模型与拉曼光谱的主成分分析算法的比较

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Raman spectroscopy exploits the Raman scattering effect to analyze chemical compounds with the use of laser light. Raman spectra are most commonly analyzed using the ordinary least squares (LS) method. However, LS is known to be sensitive to variability in the spectra of the analyte and background materials. In a previous paper, we addressed this problem by proposing a novel algorithm that models expected variations in the analyte as well as background signals. The method was called the hybrid LS and principal component analysis (HLP) algorithm and used an unweighted Gaussian distribution to model the noise in the measured spectra. In this paper, we show that the noise in fact follows a Poisson distribution and improve the noise model of our hybrid algorithm accordingly. We also approximate the Poisson noise model by a weighted Gaussian noise model, which enables the use of a more efficient solver algorithm. To reflect the generalization of the noise model, we from hereon call the method the hybrid reference spectrum and principal components analysis (HRP) algorithm. We compare the performance of LS and HRP with the unweighted Gaussian (HRP-G), Poisson (HRP-P), and weighted Gaussian (HRP-WG) noise models. Our experiments use both simulated data and experimental data acquired from a serial dilution of Raman-enhanced gold-silica nanoparticles placed on an excised pig colon. When the only signal variability was zero-mean random noise (as examined using simulated data), HRP-P consistently outperformed HRP-G and HRP-WG, with the latter coming in as a close second. Note that in this scenario, LS and HRP-G were equivalent. In the presence of random noise as well as variations in the mean component spectra, the three HRP algorithms significantly outperformed LS, but performed similarly among themselves. This indicates that, in the presence of significant variations in the mean component spectra, modeling such variations is more important than optimizing the noise model. It also suggests that for real data, HRP-WG provides a desirable trade-off between noise model accuracy and computational speed.
机译:拉曼光谱利用激光的拉曼散射效应来分析化合物。拉曼光谱通常使用普通最小二乘法(LS)进行分析。但是,已知LS对分析物和背景材料的光谱变化敏感。在以前的论文中,我们通过提出一种新颖的算法来解决这个问题,该算法可以对分析物以及背景信号的预期变化进行建模。该方法称为混合LS和主成分分析(HLP)算法,并使用非加权高斯分布对测量光谱中的噪声进行建模。在本文中,我们表明噪声实际上遵循泊松分布,并相应地改进了混合算法的噪声模型。我们还通过加权高斯噪声模型对泊松噪声模型进行了近似,从而可以使用更高效的求解器算法。为了反映噪声模型的一般性,我们在此将方法称为混合参考频谱和主成分分析(HRP)算法。我们将LS和HRP的性能与未加权高斯(HRP-G),泊松(HRP-P)和加权高斯(HRP-WG)噪声模型进行了比较。我们的实验既使用模拟数据,也使用从连续稀释的拉曼增强金二氧化硅纳米颗粒连续稀释后获得的实验数据,这些纳米颗粒被置于已切除的猪结肠上。当唯一的信号可变性是零均值随机噪声(使用模拟数据进行检查)时,HRP-P始终优于HRP-G和HRP-WG,后者紧随其后。请注意,在这种情况下,LS和HRP-G是等效的。在存在随机噪声以及平均成分谱变化的情况下,三种HRP算法的性能明显优于LS,但它们之间的执行方式相似。这表明,在平均成分谱存在明显变化的情况下,对这种变化进行建模比优化噪声模型更为重要。这也表明,对于真实数据,HRP-WG在噪声模型的准确性和计算速度之间提供了理想的折衷方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号