首页> 外文期刊>Journal of Process Control >Dynamic modeling, simulation, and MIMO predictive control of a tubular solid oxide fuel cell
【24h】

Dynamic modeling, simulation, and MIMO predictive control of a tubular solid oxide fuel cell

机译:管状固体氧化物燃料电池的动态建模,仿真和MIMO预测控制

获取原文
获取原文并翻译 | 示例
           

摘要

Solid oxide fuel cells are a promising option for distributed energy stationary power generation that offers efficiencies up to 50 in stand-alone applications, 70 in hybrid gas turbine applications and 80 in cogeneration. To advance SOFC technology sufficiently for widespread market penetration, the SOFC must demonstrate improved cell lifetime from the status quo. Much research has been performed to improve SOFC lifetime using advanced geometries and materials, and in this research, we suggest further improving lifetime by designing an advanced control algorithm based upon preexisting mechanical stress analysis [1]. Control algorithms commonly address SOFC lifetime related operability objectives using unconstrained, SISO control algorithms that seek to minimize thermal transients. While thermal fatigue may be one thermal stress driver, these studies often do not consider maximum radial thermal gradients or critical absolute temperatures in the SOFC. In addition, researchers often discuss hot-spots as a critical lifetime reliability issue, but as previous stress work demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs modeled after the Siemens Power Generation, Inc. design. In this work, we present a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop simulations with a constrained, MIMO model predictive control algorithm. Closed-loop simulation results demonstrate effective load-following, operability constraint satisfaction, and disturbance rejection.
机译:固态氧化物燃料电池是分布式能源固定式发电的有前途的选择,其在独立应用中的效率高达50,在混合燃气轮机应用中的效率高达70,在热电联产中的效率高达80。为了使SOFC技术充分发展以广泛地进入市场,SOFC必须从现状开始证明其电池寿命得以改善。已经进行了许多研究,以使用先进的几何形状和材料来提高SOFC寿命,在这项研究中,我们建议通过基于现有机械应力分析设计先进的控制算法来进一步提高寿命[1]。控制算法通常使用无约束的SISO控制算法来解决与SOFC寿命相关的可操作性目标,这些算法试图使热瞬变最小化。尽管热疲劳可能是一个热应力驱动因素,但这些研究通常没有考虑SOFC中的最大径向热梯度或临界绝对温度。此外,研究人员经常讨论热点问题,这是生命周期可靠性的关键问题,但是正如先前的压力研究表明的那样,最低电池温度是按照Siemens Power Generation,Inc.设计的管状SOFC的主要热应力驱动因素。在这项工作中,我们提出了一个动态的准二维模型,用于高温管状SOFC与喷射器和预改革器模型的组合。该模型捕获了关键热应力驱动器的动力学特性,并被用作具有约束的MIMO模型预测控制算法的闭环仿真的物理工厂。闭环仿真结果表明有效的负载跟踪,可操作性约束满足和干扰抑制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号