首页> 外文期刊>Journal of Polymer Science, Part B. Polymer Physics >Reinforcement effect of carbon nanofillers in an epoxy resin system: Rheology, molecular dynamics, and mechanical studies
【24h】

Reinforcement effect of carbon nanofillers in an epoxy resin system: Rheology, molecular dynamics, and mechanical studies

机译:碳纳米填料在环氧树脂体系中的增强作用:流变性,分子动力学和力学研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The reinforcing effect of carbon nanoparticles in an epoxy resin has been estimated with different approaches based on rheology, molecular dynamics (evaluated by differential scanning calorimetry, dielectric relaxation spectroscopy, and thermally stimulated depolarization current), and dynamic mechanical analysis. Carbon particles aggregate as the volume increases and form a fractal structure in the matrix polymer. The dispersion microstructure has been characterized by its viscoelastic properties and relaxation time spectrum. The scaling of the storage modulus and yield stress with the volume fraction of carbon shows two distinct exponents and has thus been used to determine the critical carbon volume fraction of the network formation ((Phi*) for the carbon/epoxy dispersions. At nanofiller concentrations greater than Phi*, the overall mobility of the polymer chains is restricted in both dispersions and solid nanocomposites. Therefore, (1) the relaxation spectrum of the dispersions is strongly shifted toward longer times, (2) the glass-transition temperature is increased and (3) the relaxation strength of both the secondary (0) and primary (a) relaxations increases in the nanocomposites, with respect to the pure polymer matrix. The dispersion microstructure, consisting of fractal flocs and formed above Phi*, is proposed to play the main role in the reinforcement of nanocomposites. Moreover, the network structure and the interface polymer layer (bond layer), surrounding nanoparticles, increases the relaxation strength and slows the cooperative alpha relaxation, and this results in an improvement of the mechanical properties. (C) 2005 Wiley Periodicals, Inc.
机译:已经基于流变学,分子动力学(通过差示扫描量热法,介电弛豫谱和热激发的去极化电流进行了评估)和动态力学分析,以不同的方法评估了碳纳米颗粒在环氧树脂中的增强作用。碳颗粒随着体积的增加而聚集,并在基体聚合物中形成分形结构。分散体微结构的特征在于其粘弹性和弛豫时间谱。储能模量和屈服应力随碳的体积分数的变化表现出两个截然不同的指数,因此已被用于确定碳/环氧分散体网络形成的临界碳体积分数((Phi *))。大于Phi *时,聚合物链的整体迁移率在分散体和固体纳米复合物中均受到限制,因此,(1)分散体的弛豫谱向更长的时间强烈偏移,(2)玻璃化温度升高,并且(3)相对于纯聚合物基体,纳米复合材料中次要(0)和主要(a)的弛豫强度均增加,提出了由分形絮状物组成并在Phi *上方形成的分散微结构。在增强纳米复合材料方面起主要作用,此外,围绕纳米颗粒的网络结构和界面聚合物层(粘结层)增加了松弛强度并减慢协同α松弛,这导致机械性能的改善。 (C)2005 Wiley期刊公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号