...
首页> 外文期刊>Journal of physical chemistry letters >Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration
【24h】

Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

机译:通过光和电子束驱动的离子迁移降解甲基铵碘化铅钙钛矿结构

获取原文
获取原文并翻译 | 示例
           

摘要

Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques.
机译:有机金属卤化物钙钛矿显示出有前途的功能,可用于光伏中的低成本应用。由于不了解降解途径,材料的不稳定性仍然是广泛应用的主要障碍。在这里,我们首次在钙钛矿上同时应用了发光和电子显微镜技术,从而使我们能够监测钙钛矿降解后的原位形态演变和光学性质。有趣的是,钙钛矿样品的形貌,光致发光(PL)和阴极发光在电子束(e-beam)或光驱动下降解时会发生不同的变化。扫描电子束产生的横向电流会导致PL发生剧烈变化,并随着薄膜变薄而连续调整能带隙。相反,光诱导的降解导致材料分解为分散的颗粒,并且PL光谱移位很小。降解的差异可以归因于驱动离子迁移的不同电流。而且,固溶钙钛矿长方体在稳定性方面显示出异质性,这可能与结晶度和形态有关。我们的结果揭示了离子迁移在钙钛矿降解中的重要作用,并提供了潜在途径,可通过减少离子迁移同时改善形态和结晶度来合理地增强钙钛矿材料的稳定性。值得注意的是,即使中等的电子束电流(86 pA)和加速电压(10 kV)也容易引起钙钛矿的显着降解并改变其光学性能。因此,在使用扫描电子显微镜或透射电子显微镜技术表征此类材料时必须引起注意。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号