首页> 外文期刊>Journal of Physics. Condensed Matter >Scanning tunnelling microscopic and spectroscopic investigation of the microstructural and electronic properties of the grain boundaries of giant magnetoresistive manganites
【24h】

Scanning tunnelling microscopic and spectroscopic investigation of the microstructural and electronic properties of the grain boundaries of giant magnetoresistive manganites

机译:巨型磁阻锰矿晶界的扫描隧道显微镜和光谱学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Scanning tunnelling microscopic (STM) and spectroscopic (STS) investigations have been carried out on the grain boundaries (GBs) bf sintered pellets of giant magnetoresistive perovskite manganites La0.67Ca0.33MnO3 (LCMO), La0.60Y0.07Ca0.33MnO3 (LYMCO) and La0.67Pb0.10Ca0.23MnO3 (LPMCO) Based on spectroscopic data obtained and estimation of band gap, it has been concluded that these materials possess some sort of semiconducting intergranular layer (IGL) whose thicknesses are in the range of a few nm to about 100 nm and the band gap is in the range of 0.3-0.45 eV. IGLs are usually more resistive than the grains. For semiconducting samples like LCMO and LYCMO (room temperature band gap = 0.23 and 0.27 eV respectively), IGLs bend the energy band near GBs. This bending has been estimated to be about 40-50 meV with the depletion depth of few tens of nm extending on both sides of the IGL. The decrease in conductivity near the GB is due to the disorder induced carrier scattering and the bending of the band. LPCMO is almost conducting at room temperature. The GBs in this material sometimes exhibit conducting behaviour which may be due to the accumulation of some conducting material or the trapping:centres in the IGL. Scanning electron microscopic and electrical measurements also justify the STM/STS results. [References: 32]
机译:已对巨型磁阻钙钛矿锰矿La0.67Ca0.33MnO3(LCMO),La0.60Y0.07Ca0.33MnO3(LYMCO)烧结球团的晶界(GB)进行了扫描隧道显微镜(STM)和光谱(STS)研究La0.67Pb0.10Ca0.23MnO3和La0.67Pb0.10Ca0.23MnO3(LPMCO)根据获得的光谱数据和带隙估计,可以得出结论,这些材料具有某种半导体半晶间层(IGL),其厚度在几纳米到100纳米之间。约100nm,并且带隙在0.3-0.45eV的范围内。 IGL通常比谷物更具抵抗力。对于LCMO和LYCMO之类的半导体样品(室温带隙分别为0.23和0.27 eV),IGL将能带弯曲到GBs附近。估计该弯曲为约40-50meV,数十nm的耗尽深度在IGL的两侧延伸。 GB附近的电导率下降是由于无序引起的载流子散射和频带弯曲所致。 LPCMO在室温下几乎可以导电。这种材料中的GB有时会表现出导电行为,这可能是由于某些导电材料的积累或IGL中的俘获中心所致。扫描电子显微镜和电学测量也证明了STM / STS结果的合理性。 [参考:32]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号