首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Effect of the dielectric barrier on discharges in non-uniform electric fields
【24h】

Effect of the dielectric barrier on discharges in non-uniform electric fields

机译:介质势垒对非均匀电场中放电的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This paper is aimed at calculating the electric field in the point-to-plane electrode system with the plate covered with a dielectric layer. With charge accumulation on the dielectric surface by corona discharge, the field in the dielectric is increased at the expense of a decrease in the gas gap. The charge accumulation on the dielectric surface proceeds to the maximum possible value when the normal component of the surface field vanishes. With the dielectric layer fully-charged, the percentage decrease of the field in the gas gap is maximum at the dielectric surface and declines along the gap axis to vanish at the point tip. The percentage decrease of the field becomes more pronounced with the increase of the diameter of the dielectric layer. The effect of inter-electrode spacing and the dielectric layer thickness on the field distribution is investigated. An accurate method of charge simulation was used for field calculation irrespective of the thickness of the dielectric layer and the gap geometry. With ion flow along the flux lines from the stressed point to the ground plane, the field enhancement factor increases and the volume charge density decreases along the flux lines. The voltages of the ion flow threshold and corona quenching are calculated and compared with previous measurements. The method of calculation is extended to calculate how high the surface potential of the charged dielectric needs to be to trigger a micro-spark in the electrostatic discharges from grounded point electrodes. [References: 23]
机译:本文旨在计算板覆盖有电介质层的点对面电极系统中的电场。通过电晕放电使电荷累积在电介质表面上,以减小气隙为代价增加电介质中的电场。当表面场的法向分量消失时,电介质表面上的电荷积累将达到最大可能值。在电介质层充满电的情况下,气隙中电场的百分比减小在电介质表面最大,并且沿间隙轴下降,在尖端逐渐消失。随着电介质层直径的增加,电场的百分比减小变得更加明显。研究了电极间距和介电层厚度对场分布的影响。不论介电层的厚度和间隙的几何形状如何,均采用精确的电荷模拟方法进行场计算。随着离子沿着从应力点到地平面的通量线流动,场增强因子增加并且体积电荷密度沿通量线降低。计算离子流阈值和电晕猝灭的电压,并将其与以前的测量结果进行比较。扩展了计算方法,以计算带电电介质的表面电势需要多大才能触发来自接地点电极的静电放电中的微火花。 [参考:23]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号