...
首页> 外文期刊>Journal of Physics, B. Atomic, Molecular and Optical Physics: An Institute of Physics Journal >Single-particle coherent diffractive imaging with a soft X-ray free electron laser: Towards soot aerosol morphology
【24h】

Single-particle coherent diffractive imaging with a soft X-ray free electron laser: Towards soot aerosol morphology

机译:软X射线自由电子激光的单粒子相干衍射成像:走向烟尘气溶胶形态

获取原文
获取原文并翻译 | 示例
           

摘要

The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 10~(12) photons per pulse, 20 μm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.
机译:这是同类产品中的第一个,位于汉堡汉堡的自由电子激光设备,可产生具有空前特性的软X射线脉冲(10 fs,6.8-47 nm,每个脉冲10〜(12)个光子,直径20μm)。 FLASH的开创性实验之一是单脉冲相干X射线衍射成像(CXDI)。 CXDI利用超快和超亮脉冲,通过在亚皮秒级的时间内“破坏之前先衍射”,克服了X射线显微镜对分辨率的限制,该限制是X射线对样品造成的损害。对于许多用于CXDI的无透镜成像算法,当数据满足要求将样品作为孤立对象的过采样约束时,即将单独的“独立”部分无序物质输送到X射线焦点中心时,便很方便。 。根据定义,这类物质是气溶胶。本文将描述用于验证“破坏之前的衍射”假设的气溶胶科学方法论的作用,以及为生物成像开发的首个单粒子CXDI实验的执行。现在,FLASH CXDI可以对单个微米或更小的空气中的颗粒物进行最高分辨率的成像,同时保留气溶胶的天然无底物状态。电子显微镜为单颗粒分析提供了更高的分辨率,但必须将气溶胶捕获在基质上,从而可能改变颗粒的形态。因此,FLASH有望在我们对气溶胶形态和动力学的认识上做出重大贡献。例如,我们模拟了燃烧颗粒(煤烟)形态的CXDI,并引入了从单脉冲X射线衍射数据中提取分形聚集体回旋半径的概念。未来对FLASH的升级将使更高的时空分辨率的单颗粒气溶胶动力学研究成为可能,从而满足了气溶胶科学和纳米技术的关键技术需求。为闪存描述的许多方法将直接转化为用于硬X射线自由电子激光器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号