...
首页> 外文期刊>Journal of nonlinear science >The Geometry of Spontaneous Spiking in Neuronal Networks
【24h】

The Geometry of Spontaneous Spiking in Neuronal Networks

机译:神经元网络中自发尖峰的几何形状

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract The mathematical theory of pattern formation in electrically coupled networks of excitable neurons forced by small noise is presented in this work. Using the Freidlin-Wentzell large-deviation theory for randomly perturbed dynamical systems and the elements of the algebraic graph theory, we identify and analyze the main regimes in the network dynamics in terms of the key control parameters: excitability, coupling strength, and network topology. The analysis reveals the geometry of spontaneous dynamics in electrically coupled network. Specifically, we show that the location of the minima of a certain continuous function on the surface of the unit n-cube encodes the most likely activity patterns generated by the network. By studying how the minima of this function evolve under the variation of the coupling strength, we describe the principal transformations in the network dynamics. The minimization problem is also used for the quantitative description of the main dynamical regimes and transitions between them. In particular, for the weak and strong coupling regimes, we present asymptotic formulas for the network activity rate as a function of the coupling strength and the degree of the network. The variational analysis is complemented by the stability analysis of the synchronous state in the strong coupling regime. The stability estimates reveal the contribution of the network connectivity and the properties of the cycle subspace associated with the graph of the network to its synchronization properties. This work is motivated by the experimental and modeling studies of the ensemble of neurons in the Locus Coeruleus, a nucleus in the brainstem involved in the regulation of cognitive performance and behavior.
机译:摘要提出了在小噪声作用下可激发神经元电耦合网络中模式形成的数学理论。使用Freidlin-Wentzell大偏差理论用于随机扰动的动力学系统和代数图论的要素,我们根据关键控制参数(励磁性,耦合强度和网络拓扑)识别和分析网络动力学的主要状态。 。分析揭示了电耦合网络中自发动力学的几何形状。具体来说,我们表明某个连续函数最小值在单元n多维数据集表面上的位置编码了网络生成的最可能的活动模式。通过研究在耦合强度变化下该函数的最小值如何演化,我们描述了网络动力学中的主要变换。最小化问题还用于定量描述主要动力学状态及其之间的过渡。特别是,对于弱耦合和强耦合机制,我们给出了网络活动速率随耦合强度和网络程度的函数的渐近公式。变分分析通过强耦合状态下的同步状态稳定性分析得到补充。稳定性估计值揭示了网络连通性的贡献以及与网络图相关联的循环子空间的属性对其同步属性的影响。这项工作的动机是通过对蓝斑大脑中神经元集合的实验和建模研究来进行的,蓝斑是大脑干中的一个核,参与调节认知能力和行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号