...
首页> 外文期刊>Journal of neurological surgery, Part A. Central European neurosurgery >Width of the cervical intervertebral neuroforamina after total disc replacement with the cerkinetic prosthesis: A three-dimensional simulation using a computer-aided design model
【24h】

Width of the cervical intervertebral neuroforamina after total disc replacement with the cerkinetic prosthesis: A three-dimensional simulation using a computer-aided design model

机译:颈椎假体全椎间盘置换后颈椎椎间孔的宽度:使用计算机辅助设计模型的三维模拟

获取原文
获取原文并翻译 | 示例

摘要

Introduction Physiological cervical intervertebral motion inherently induces a neuroforaminal volume change. Integration of an artificial motion component within this intervertebral kinematic system may cause neuroforamina to lose their ability for continuous and instantaneous volume adaptation, inducing foraminal stenosis. The purpose of the current study is to virtually simulate a newly developed cervical total disc replacement (TDR) to evaluate the neuroforaminal dimensions at rest and during motion. Materials and Methods In a three-dimensional computer-aided design model of the spine, the Cerkinetic (OrthoKinematica Ltd., Haifa, Israel) TDR was virtually implanted at the C5-C6 disc space. The TDR consists of a bearing mechanism with an elliptical protuberance and a recess, allowing a progressive increase of the intervertebral axial spacing in all three dimensions and in line with flexion and extension. Translations are performed in accordance with the physiological forces influencing the disc space and spinal continuum. The minimal proximal neuroforaminal width was defined and evaluated at rest and motion. Results A progressive increase (15.2% at 6 degrees) in flexion and a decrease (12.3% at 6 degrees) in extension of the neuroforaminal width were observed. With axial motion, a progressive increase (44.6% at 6 degrees) of the right neuroforamen width as well as a decrease of the left neuroforamen width (15.3% at 6 degrees) were seen. Conclusion The TDR under investigation simulates the intervertebral kinematics, allowing a physiological adjustment of the facet joints in rest and motion. This preserves the ability of the neuroforamina to maintain their capability of changing their dimensions.
机译:简介生理性颈椎椎间运动固有地引起神经孔体积变化。在该椎间运动系统内集成人工运动成分可能导致神经孔丧失连续和瞬时体积适应的能力,从而导致椎间孔狭窄。当前研究的目的是虚拟模拟新开发的颈椎全盘置换术(TDR),以评估静止和运动过程中神经孔的尺寸。材料和方法在脊柱的三维计算机辅助设计模型中,将Cerkinetic(OrthoKinematica Ltd.,以色列海法)的TDR虚拟植入了C5-C6椎间盘空间。 TDR由带有椭圆形突起和凹槽的轴承机构组成,可在所有三个维度上逐步增大椎间轴向间距,并与屈曲和伸展相一致。根据影响椎间盘间隙和脊柱连续体的生理力进行翻译。在休息和运动时定义和评估最小近端神经孔宽度。结果观察到神经孔宽度的逐渐增加(6度时为15.2%)和弯曲(6度时为12.3%)。通过轴向运动,可以看到右神经孔宽度逐渐增加(6度时为44.6%)以及左神经孔宽度减小(6度时为15.3%)。结论研究中的TDR模拟了椎间运动,可以在休息和运动时对小关节进行生理调节。这保留了神经孔保持其改变尺寸的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号