首页> 外文期刊>Journal of Molecular Spectroscopy >A hollow-cathode THz spectrometer for the study of astrophysical ions and radicals: Benchmarking with N2H+ and extended measurements for N2D+
【24h】

A hollow-cathode THz spectrometer for the study of astrophysical ions and radicals: Benchmarking with N2H+ and extended measurements for N2D+

机译:用于研究天体离子和自由基的空心阴极太赫兹光谱仪:使用N2H +进行基准测试和对N2D +进行扩展测量

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Here we present the first results from a DC-discharge hollow-cathode spectrometer developed for the detection of transient species of astrophysical interest in the THz spectral regime. The new instrument was benchmarked using rotational spectral lines of N2H+ and N2D+. The known rotational lines of N2H+ were used to optimize ion formation conditions in the discharge. We then used the known spectral lines at frequencies below 700 GHz to further optimize the production efficiency of N2D+, and extended spectral measurements for this ion up to similar to 1 THz. This resulted in the detection of four additional N2D+ rotational lines that have not been previously measured experimentally. We have used the observed line positions for N2D+ to refine the molecular parameters and extend a more accurate spectral prediction above 1 THz. In addition to being excellent target molecules for benchmarking our spectrometer, N2D+ and N2H+ are commonly used as tracers of isotopic fractionation in dense interstellar clouds. Therefore, these new measurements are important for guiding astronomical observations using the high frequency bands of the new Atacama Large Millimeter Array (ALMA) and other far-IR observatories. (C) 2014 Elsevier Inc. All rights reserved.
机译:在这里,我们介绍了直流放电空心阴极光谱仪的第一个结果,该光谱仪用于检测THz光谱范围内的天体物理学感兴趣的瞬态物质。使用N2H +和N2D +的旋转光谱线对新仪器进行了基准测试。已知的N2H +旋转线用于优化放电中的离子形成条件。然后,我们使用低于700 GHz频率的已知谱线进一步优化N2D +的生产效率,并对该离子进行扩展的光谱测量,直至接近1 THz。这导致检测到了四个附加的N2D +旋转线,这些旋转线先前尚未通过实验进行测量。我们使用观察到的N2D +的谱线位置来细化分子参数,并在1 THz以上扩展更准确的光谱预测。 N2D +和N2H +除了是标定光谱仪的出色靶分子外,还经常用作密集星际云中同位素分级的示踪剂。因此,这些新的测量对于使用新的阿塔卡马大毫米波阵列(ALMA)和其他远红外观测站的高频带指导天文观测非常重要。 (C)2014 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号