...
首页> 外文期刊>Journal of molecular modeling >EMPIRE: a highly parallel semiempirical molecular orbital program: 1: self-consistent field calculations
【24h】

EMPIRE: a highly parallel semiempirical molecular orbital program: 1: self-consistent field calculations

机译:EMPIRE:高度并行的半经验分子轨道程序:1:自洽场计算

获取原文
获取原文并翻译 | 示例
           

摘要

We use the expression “semiempirical molecular-orbital theory” in the following only for MNDO-like NDDO-based molecular-orbital (MO) techniques [1] such as MNDO [2], MNDO/c [3], MNDO/d [4–7], AM1 [8], AM1~* [9–14], RM1 [15], PM3 [16, 17], and PM6 [18]. These methods represent the currently accepted norm for semiempirical MO calculations, although more accurate methods that include orthogonalization corrections are also available [19–21]. The major advantage of such techniques is that they provide quite accurate one-electron properties [1] at a fraction (generally estimated to be at most 10~(?3)) of the computational cost of techniques such as density-functional theory (DFT) or ab initio calculations. Because of the dominant diagonalization of the Fock-matrix, semiempirical MO calculations are generally considered to scale with O(N~3), where N is the number of atomic orbitals. Linear scaling can be approached quite easily by using either divide and conquer (D&C) [22–24] or localized molecular orbital (LMO) [25] techniques, although neither is suitable for very extensively conjugated systems such as those typically encountered in molecular electronic devices [26]. However, the current generation of linear scaling semiempirical MO programs is quite adequate for calculating wavefunctions for most protein-sized molecules. A practical upper limit on desktop hardware seems to lie around or slightly below 20,000 atoms [27]. Because the calculations are fast, relatively little attention has been paid to efficient parallel computation and most current programs are essentially scalar in nature. A parallel version of MNDO94 was described as long ago as 1995 [28]. The D&C codes are in principle moderately parallel but parallel performance has not until now been an important issue for semiempirical MO calculations. More recently, an SCF approach for threedimensional condensed-phase systems has been introduced that has the potential to be able to perform calculations on millions of atoms with NDDO [29].
机译:在下文中,我们仅针对类似MNDO的基于NDDO的分子轨道(MO)技术[1],例如MNDO [2],MNDO / c [3],MNDO / d [ 4–7],AM1 [8],AM1〜* [9-14],RM1 [15],PM3 [16、17]和PM6 [18]。这些方法代表了当前接受的半经验MO计算准则,尽管也可以使用包括正交校正的更准确的方法[19-21]。这种技术的主要优势在于,它们以密度函数理论(DFT)等技术的计算成本的一小部分(通常估计最多为10〜(?3))提供非常准确的单电子性质[1]。 )或从头算起。由于福克矩阵占优势的对角线化,半经验MO计算通常被认为与O(N〜3)成比例,其中N是原子轨道数。通过使用分而治之(D&C)[22-24]或局部分子轨道(LMO)[25]技术,可以很容易地实现线性缩放,尽管这两种方法都不适合非常广泛的共轭系统,例如分子电子中通常遇到的系统。设备[26]。但是,当前生成的线性缩放半经验MO程序对于计算大多数蛋白质大小的分子的波函数而言已经足够了。台式机硬件的实际上限似乎在20,000原子左右或略低于20,000 [27]。因为计算速度快,所以很少有注意力放在有效的并行计算上,并且大多数当前程序本质上都是标量的。 MNDO94的并行版本早在1995年就已描述[28]。 D&C代码原则上是适度并行的,但直到现在,并行性能才成为半经验MO计算的重要问题。最近,引入了一种用于三维凝聚相系统的SCF方法,该方法具有使用NDDO能够对数百万个原子执行计算的潜力[29]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号