...
首页> 外文期刊>Journal of neurosurgery. >Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes Clinical article
【24h】

Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes Clinical article

机译:皮质表面模型上的递归网格划分:一种用于植入硬脑膜下电极定位的优化技术临床文章

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Object. Precise localization of subdural electrodes (SDEs) is essential for the interpretation of data from intracranial electrocorticography recordings. Blood and fluid accumulation underneath the craniotomy flap leads to a nonlinear deformation of the brain surface and of the SDE array on postoperative CT scans and adversely impacts the accurate localization of electrodes located underneath the craniotomy. Older methods that localize electrodes based on their identification on a post-implantation CT scan with coregistration to a preimplantation MR image can result in significant problems with accuracy of the electrode localization. The authors report 3 novel methods that rely on the creation of a set of 3D mesh models to depict the pial surface and a smoothed pial envelope. Two of these new methods are designed to localize electrodes, and they are compared with 6 methods currently in use to determine their relative accuracy and reliability.Methods. The first method involves manually localizing each electrode using digital photographs obtained at surgery. This is highly accurate, but requires time intensive, operator-dependent input. The second uses 4 electrodes localized manually in conjunction with an automated, recursive partitioning technique to localize the entire electrode array. The authors evaluated the accuracy of previously published methods by applying the methods to their data and comparing them against the photograph-based localization. Finally, the authors further enhanced the usability of these methods by using automatic parcellation techniques to assign anatomical labels to individual electrodes as well as by generating an inflated cortical surface model while still preserving electrode locations relative to the cortical anatomy.Results. The recursive grid partitioning had the least error compared with older methods (672 electrodes, 6.4-mm maximum electrode error, 2.0-mm mean error, p < 10~18). The maximum errors derived using prior methods of localization ranged from 8.2 to 11.7 mm for an individual electrode, with mean errors ranging between 2.9 and 4.1 mm depending on the method used. The authors also noted a larger error in all methods that used CT scans alone to localize electrodes compared with those that used both postoperative CT and postoperative MRI. The large mean errors reported with these methods are liable to affect intermodal data comparisons (for example, with functional mapping techniques) and may impact surgical decision making.Conclusions. The authors have presented several aspects of using new techniques to visualize electrodes implanted for localizing epilepsy. The ability-to use automated labeling schemas to denote which gyrus a particular electrode overlies is potentially of great utility in planning resections and in corroborating the results of extraoperative stimulation mapping. Dilation of the pial mesh model provides, for the first time, a sense of the cortical surface not sampled by the electrode, and the potential roles this "electrophysiologically hidden" cortex may play in both eloquent function and seizure onset.
机译:目的。硬膜下电极(SDEs)的精确定位对于颅内皮层脑电记录的数据解释至关重要。颅骨切开术皮瓣下方的血液和液体积聚会导致术后CT扫描时大脑表面和SDE阵列发生非线性变形,并对位于颅骨切开术下方的电极的准确定位产生不利影响。基于在植入后CT扫描上的识别(基于对植入前MR图像的一致性)对电极进行定位的较旧方法可能会导致电极定位精度出现重大问题。作者报告了3种新颖的方法,这些方法依赖于一组3D网格模型的创建来描绘面膜表面和平滑的面膜包络。设计了其中两种新方法来对电极进行定位,并将它们与当前使用的6种方法进行比较以确定它们的相对精度和可靠性。第一种方法涉及使用在手术中获得的数字照片手动定位每个电极。这是非常准确的,但是需要时间密集,依赖于操作员的输入。第二个使用手动定位的4个电极,结合自动的递归分区技术来定位整个电极阵列。作者通过将方法应用于其数据并将其与基于照片的本地化进行比较,从而评估了以前发布的方法的准确性。最后,作者通过使用自动分割技术为每个电极分配解剖标记以及生成充气的皮质表面模型,同时仍保留相对于皮质解剖结构的电极位置,进一步增强了这些方法的可用性。与旧方法相比,递归网格划分的误差最小(672个电极,最大电极误差为6.4 mm,平均误差为2.0 mm,p <10〜18)。对于单个电极,使用现有的定位方法得出的最大误差范围为8.2至11.7 mm,根据所使用的方法,平均误差范围为2.9至4.1 mm。作者还指出,与使用术后CT和术后MRI的方法相比,仅使用CT扫描定位电极的所有方法的误差更大。这些方法报告的平均误差较大,可能会影响联运数据比较(例如,使用功能作图技术),并可能影响手术决策。作者介绍了使用新技术可视化植入的用于定位癫痫的电极的几个方面。使用自动标记方案来指示特定电极覆盖的回旋的能力可能在计划切除和证实术外刺激标测的结果方面很有用。皮层网状模型的扩张首次提供了未被电极采样的皮质表面的感觉,以及这种“电生理隐蔽”的皮质可能在雄辩的功能和癫痫发作中起潜在作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号