首页> 外文期刊>Journal of Neurophysiology >Multiple postsynaptic actions of GABA via GABAB receptors on CA1 pyramidal cells of rat hippocampal slices.
【24h】

Multiple postsynaptic actions of GABA via GABAB receptors on CA1 pyramidal cells of rat hippocampal slices.

机译:GABA通过GABAB受体对大鼠海马切片CA1锥体细胞的多种突触后作用。

获取原文
获取原文并翻译 | 示例
           

摘要

1. The effects of gamma-aminobutyric acid (GABA) on non-GABAA receptors were investigated with intracellular recordings in CA1 pyramidal cells of rat hippocampal slices in the presence of antagonists of GABAA receptors (50 microM bicuculline and 50 microM picrotoxin), N-methyl-D-aspartate (NMDA) and non-NMDA receptors (100 microM 2-amino-5-phosphonopentanoic acid and 40 microM 6-cyano-7-nitroquinoxaline-2,3-dione, respectively), and of a blocker of GABA uptake (1 mM nipecotic acid). The effects of GABA were compared with those of the selective GABAB agonist (-)baclofen [CGP-11973A; (-)BAC]. 2. In the presence of these antagonists, micropressure application of GABA into stratum radiatum evoked hyperpolarizations with relatively fast peak latency (2 s) and decay (12 s). (-)BAC, in the absence of antagonists, hyperpolarized cells, but with a slower time course (peak latency 8 s, decay 78 s). The mean equilibrium potential (Erev) of responses to GABA (-94 mV; n = 11) was similar to that of (-)BAC (-87 mV; n = 8), suggesting that both responses were mediated by K+ conductances. 3. Bath applications of 1 mM Ba2+ partly antagonized GABA responses in a reversible manner. The mean amplitude of the Ba(2+)-resistant GABA response was 46% of control (n = 16, P < 0.05). In contrast, (-) BAC responses were completely abolished by Ba2+ (n = 15), and the effect was reversible. Thus both GABA and (-)BAC activate a common Ba(2+)-sensitive conductance, but GABA may also activate another Ba(2+)-resistant conductance. 4. The Ba(2+)-resistant GABA response had a similar time course to control GABA responses, but its Erev was more depolarized (-79 mV, n = 8, P < 0.05). 5. During recordings with electrodes containing KCl to reverse the Cl- gradient, although GABA responses were smaller in amplitude, their time course and Erev (-91 mV; n = 10) were similar to those recorded with potassium acetate electrodes. Thus Cl- conductances may not be involved in these non-GABAA responses elicited by GABA. 6. During recordings with electrodes containing CsCl to block outward K+ currents, hyperpolarizing GABA responses were not observed (n = 8). In these conditions, GABA elicited depolarizing responses with a faster time course (peak latency 1 s, decay 5 s) than the hyperpolarizing responses recorded with electrodes containing KCl. Thus GABA may produce hyperpolarizations by activating K+ conductances, but it may also produce an additional depolarzing response via other Cs(+)-insensitive conductances. 7. During recordings with electrodes containing LiCl to interfere with G protein activation, hyperpolarizing GABA responses were blocked and depolarizing responses were unmasked (n = 5). These depolarizing responses were generally similar to those recorded with electrodes containing CsCl. GABA responses were also reduced during recordings with electrodes containing the irreversible G protein activator guanosine-5'-O-(3-thiotriphosphate). Thus hyperpolarizing GABA responses may involve G protein activation, but the depolarizing responses maynot. 8. Bath application of the selective GABAB antagonist CGP-35348 (1 mM) did not significantly reduce hyperpolarizing GABA responses (18% reduction in amplitude, n = 6, P > 0.05), but completely suppressed (-)BAC responses (n = 2). The more potent and selective GABAB antagonist CGP-55845A (5 microM) abolished all GABA responses (n = 7). Thus all non-GABAA responses elicited by GABA may be mediated by GABAB receptors. 9. In conclusion, GABA, in the presence of GABAA antagonists, may produce in CA1 pyramidal cells two distinct postsynaptic responses mediated via GABAB receptors and G protein activation: l) GABA [and (-)BAC] may activate a Ba(2+)-sensitive K+ conductance, and 2) GABA [but not (-)BAC] may also generate a Ba(2+)-insensitive K+ conductance. GABA may also generate other ionic changes, via GABAB receptors, resulting in depolarization of pyramidal cells.
机译:1.在存在GABAA受体拮抗剂(50 microM双小分子和50 microM微小毒素),N- D-天冬氨酸甲酯(NMDA)和非NMDA受体(分别为100 microM 2-氨基-5-膦基戊酸和40 microM 6-氰基-7-硝基喹喔啉-2,3-二酮)和GABA阻滞剂吸收(1 mM乳酸)。将GABA的作用与选择性GABAB激动剂(-)baclofen [CGP-11973A; (-)BAC]。 2.在存在这些拮抗剂的情况下,将GABA微压应用到放射状的层中会引起超极化,并具有相对较快的峰潜伏期(2 s)和衰减(12 s)。 (-)BAC,在没有拮抗剂的情况下,出现超极化细胞,但时程较慢(峰值潜伏期8 s,衰减78 s)。对GABA(-94 mV; n = 11)的响应的平均平衡电位(Erev)与(-)BAC(-87 mV; n = 8)的响应相类似,表明这两种响应均由K +电导介导。 3. 1 mM Ba2 +的浸浴以可逆方式部分拮抗GABA反应。耐Ba(2+)的GABA反应的平均幅度为对照组的46%(n = 16,P <0.05)。相反,Ba2 +(n = 15)完全消除了(-)BAC响应,并且效果是可逆的。因此,GABA和(-)BAC都激活了常见的Ba(2+)敏感电导,但是GABA也可能激活了另一个Ba(2+)耐药电导。 4.耐Ba(2+)的GABA反应在控制GABA反应上具有相似的时间过程,但其Erev去极化更多(-79 mV,n = 8,P <0.05)。 5.在用含KCl的电极反转Cl-梯度的记录过程中,尽管GABA响应的幅度较小,但其时程和Erev(-91 mV; n = 10)与用乙酸钾电极记录的相似。因此,Cl-电导可能不参与由GABA引起的这些非GABAA反应。 6.在用含CsCl的电极阻止外向K +电流的记录过程中,未观察到超极化的GABA反应(n = 8)。在这些条件下,与用含KCl的电极记录的超极化反应相比,GABA引发的去极化反应具有更快的时间过程(峰值潜伏期1 s,衰减5 s)。因此,GABA可能通过激活K +电导产生超极化,但它也可能通过其他对Cs(+)不敏感的电导产生额外的去极化响应。 7.在用含LiCl的电极进行记录以干扰G蛋白活化的过程中,超极化GABA反应被阻止,去极化反应被掩盖(n = 5)。这些去极化反应通常类似于用含CsCl的电极记录的去极化反应。使用含有不可逆的G蛋白活化剂鸟苷5'-O-(3-硫代三磷酸)的电极在录制过程中,GABA反应也降低了。因此,超极化的GABA反应可能涉及G蛋白激活,但去极化的反应可能没有。 8.选择性GABAB拮抗剂CGP-35348(1 mM)的沐浴应用并未显着降低超极化GABA反应(振幅降低18%,n = 6,P> 0.05),但完全抑制了(-)BAC反应(n = 2)。更有效和更具选择性的GABAB拮抗剂CGP-55845A(5 microM)消除了所有GABA反应(n = 7)。因此,由GABA引发的所有非GABA A反应都可以由GABA B受体介导。 9.总之,在存在GABAA拮抗剂的情况下,GABA可能会在CA1锥体细胞中产生两种不同的突触后突触反应,这些反应是通过GABAB受体和G蛋白激活介导的:l)GABA [和(-)BAC]可能激活Ba(2+ )敏感的K +电导率;以及2)GABA [但(-)BAC则不是)也可能生成Ba(2+)不敏感的K +电导率。 GABA还可以通过GABA B受体产生其他离子变化,导致锥体细胞去极化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号