首页> 外文期刊>Journal of Neurophysiology >Mapping brain networks in awake mice using combined optical neural control and fMRI.
【24h】

Mapping brain networks in awake mice using combined optical neural control and fMRI.

机译:使用光学神经控制和功能磁共振成像技术在清醒小鼠中绘制大脑网络图。

获取原文
获取原文并翻译 | 示例
           

摘要

Behaviors and brain disorders involve neural circuits that are widely distributed in the brain. The ability to map the functional connectivity of distributed circuits, and to assess how this connectivity evolves over time, will be facilitated by methods for characterizing the network impact of activating a specific subcircuit, cell type, or projection pathway. We describe here an approach using high-resolution blood oxygenation level-dependent (BOLD) functional MRI (fMRI) of the awake mouse brain-to measure the distributed BOLD response evoked by optical activation of a local, defined cell class expressing the light-gated ion channel channelrhodopsin-2 (ChR2). The utility of this opto-fMRI approach was explored by identifying known cortical and subcortical targets of pyramidal cells of the primary somatosensory cortex (SI) and by analyzing how the set of regions recruited by optogenetically driven SI activity differs between the awake and anesthetized states. Results showed positive BOLD responses in a distributed network that included secondary somatosensory cortex (SII), primary motor cortex (MI), caudoputamen (CP), and contralateral SI (c-SI). Measures in awake compared with anesthetized mice (0.7% isoflurane) showed significantly increased BOLD response in the local region (SI) and indirectly stimulated regions (SII, MI, CP, and c-SI), as well as increased BOLD signal temporal correlations between pairs of regions. These collective results suggest opto-fMRI can provide a controlled means for characterizing the distributed network downstream of a defined cell class in the awake brain. Opto-fMRI may find use in examining causal links between defined circuit elements in diverse behaviors and pathologies.
机译:行为和脑部疾病涉及广泛分布于大脑中的神经回路。表征激活特定子电路,单元类型或投影路径对网络的影响的方法将有助于映射分布式电路的功能连通性以及评估此连通性随时间演变的能力。我们在这里描述了一种使用清醒小鼠大脑的高分辨率血液氧合水平依赖性(BOLD)功能性MRI(fMRI)的方法来测量由表达光门控的局部,定义的细胞类别的光激活引起的分布式BOLD反应离子通道通道视紫红质2(ChR2)。通过识别初级体感皮层(SI)锥体细胞的已知皮质和皮质下靶标,以及通过分析由光遗传学驱动的SI活性招募的区域集在清醒状态和麻醉状态之间的差异,探索了这种光功能磁共振成像方法的实用性。结果显示,在包括次要的体感皮层(SII),主要的运动皮层(MI),caudoputamen(CP)和对侧SI(c-SI)的分布式网络中,BOLD响应呈阳性。与麻醉小鼠(0.7%异氟醚)相比,清醒状态下的测量结果显示,局部区域(SI)和间接刺激区域(SII,MI,CP和c-SI)的BOLD响应显着增加,并且之间的BOLD信号时间相关性增加对区域。这些集体结果表明,光核磁共振成像可以提供一种可控制的手段,用于表征清醒大脑中定义的细胞类别下游的分布式网络。光学功能磁共振成像可用于检查各种行为和病理情况下定义的电路元件之间的因果关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号