首页> 外文期刊>J. Biomed. Opt. >Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks
【24h】

Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks

机译:结合了光镊和激光解剖器,可控制烧蚀神经网络中的功能连接

获取原文
获取原文并翻译 | 示例
       

摘要

Neuronal networks in vitro represent an intermediate model situated between single neurons and brain tissue for studying neural development, coding, pharmacology, pathology, and regeneration. Understanding network dynamics requires techniques capable of monitoring the activity of an elevated number of neurons at high temporal resolution. Over the last decade, two core approaches have been favored. One of them is based on optics, as a low invasive tool for imaging the activity of many cells with subcellular resolution over a field of view of a few hundred micrometers.1 The other is the electrical extracellular recording of network activity by means of microelectrode array (MEA) devices,2 which allow the multisite monitoring of several neurons with submillisecond resolution around a limited number of electrodes distributed over a few square millimeters. Several laboratories started to combine these two methods to compensate for their complementary shortcomings in resolving and extracting neural network properties.3nThe properties of the culture substrate represent an important aspect of in vitro systems. The viscoelastic behavior of a neurite is assumed to result from the interaction of cytoskeletal components with the extracellular matrix (ECM).4 Indeed, not only chemical but also mechanical properties of the ECM can regulate cellular properties such as shape, polarity, motility, and morphological phenotypes. Alteration in the interactions between a cell and its surrounding ECM may result in apoptosis, malignant transformation, or loss of tissue architecture.5 The ability of a laser dissection system to selectively ablate subcellular compartments without damaging adjacent structures offers new possibilities for studying cell-ECM interactions6,7 or axonal regeneration.8,9nIn this work, we present the design and evaluate the performance of a system that combines two optical manipulation techniques, holographic optical tweezers (OTs), and a laser micro-dissector (LMD), to directly quantify the mechanical perturbation produced by laser ablation in a neurite, and to study in vitro regeneration of cellular processes after well-calibrated, laser-inflicted damage. Moreover, the system is configured to work in combination with fluorescence imaging and MEA electrophysiology to track and dissect neuronal interconnections for elucidating their local and network-wide role. For this purpose, we used low-density neural cultures to evaluate the architecture of the neural network, and to achieve higher spatial control of the neuronal connections we dissect and the structural changes we impose on the network itself.nThe presented system will be applied to the study of processes involved in the early stages of neuronal differentiation, with particular focus on neurite regeneration and neural network dynamics.
机译:体外神经元网络代表位于单个神经元和脑组织之间的中间模型,用于研究神经发育,编码,药理学,病理学和再生。了解网络动力学需要能够在高时间分辨率下监视数量增加的神经元活动的技术。在过去的十年中,两种核心方法受到青睐。其中一种是基于光学的,它是一种低侵入性工具,可在数百微米的视野内以亚细胞分辨率对许多细胞的活性进行成像。1另一种是通过微电极阵列对网络活动进行细胞外电记录(MEA)设备2,可以在数个平方毫米的有限数量的电极周围以亚毫秒级的分辨率对几个神经元进行多站点监控。一些实验室开始结合这两种方法,以弥补它们在解析和提取神经网络特性方面的互补缺点。3n培养物的特性代表了体外系统的重要方面。假定神经突的粘弹性行为是由细胞骨架成分与细胞外基质(ECM)相互作用引起的。4实际上,ECM的化学性质和机械性质都可以调节细胞的性质,例如形状,极性,运动性和形态表型。细胞与其周围ECM之间相互作用的改变可能导致细胞凋亡,恶性转化或组织结构的丧失。5激光解剖系统选择性消融亚细胞隔室而不会破坏相邻结构的能力为研究细胞ECM提供了新的可能性相互作用6,7或轴突再生。8,9n在此工作中,我们介绍系统的设计并评估其性能,该系统结合了两种光学操作技术(全息光镊(OTs)和激光微解剖器(LMD))来直接量化由神经突中的激光烧蚀产生的机械扰动,并研究经过良好校准的激光造成的损伤后细胞过程的体外再生。此外,该系统配置为与荧光成像和MEA电生理结合使用,以跟踪和剖析神经元互连,以阐明其局部和网络范围的作用。为此,我们使用低密度神经文化来评估神经网络的结构,并实现对解剖的神经元连接和我们对网络本身施加的结构变化的更高空间控制.n提出的系统将应用于对涉及神经元分化早期阶段的过程的研究,尤其着重于神经突再生和神经网络动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号