首页> 外文期刊>Journal of Microscopy >Backscattered electron SEM imaging of resin sections from plant specimens: observation of histological to subcellular structure and CLEM
【24h】

Backscattered electron SEM imaging of resin sections from plant specimens: observation of histological to subcellular structure and CLEM

机译:植物标本中树脂切片的背散射电子SEM成像:组织学到亚细胞结构和CLEM的观察

获取原文
获取原文并翻译 | 示例
           

摘要

We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metalsthe use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 x 10 mm in size, significantly larger than the typical 0.2 x 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations.
机译:我们已经完善了生物标本制备方法和扫描电子显微镜中的低压背散射电子成像方法,可以在连续放大倍数下进行观察。 130-70000 X,以及有关组织和亚细胞超微结构细节的文档。该技术基于Ogura和Hasegawa(1980)的早期工作,与固定电子和树脂嵌入的标本相比,使用透射电子显微镜所能获得的截面要大得多,同时提供了相似的数据。切片后,通常为约。将750 nm厚的玻璃干燥到玻璃或硅晶片的表面上,并用重金属染色,避免使用栅格。然后将玻璃/晶圆支撑件安装到标准扫描电子显微镜样品存根上,使用钇铝石榴石或ExB背散射电子检测器在5 kV的加速电压下进行碳涂层和直接成像。备选地,可以首先通过光学显微镜观察切片,例如以记录来自荧光蛋白的信号,然后通过扫描电子显微镜观察以提供相关的光/电子显微镜(CLEM)数据。这些方法在截面ca的空间范围内提供了对超微结构的通畅访问。尺寸为7 x 10毫米,明显大于常规透射电子显微镜成像所用的典型0.2 x 0.3毫米截面。当所关注的生物学很少或很难找到时,例如当生物学上难以找到时,这种方法的应用特别有用。特定的细胞类型,发育阶段,大器官,相互作用组织的细胞之间的界面(当需要在大组织中提供背景信息时)或这些因素的组合。另外,这些方法很容易用于免疫定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号