首页> 外文期刊>Journal of Microscopy >An optical sectioning programmable array microscope implemented with a digital micromirror device.
【24h】

An optical sectioning programmable array microscope implemented with a digital micromirror device.

机译:用数字微镜设备实现的光学切片可编程阵列显微镜。

获取原文
获取原文并翻译 | 示例
           

摘要

The defining feature of a programmable array microscope (PAM) is the presence of a spatial light modulator in the image plane. A spatial light modulator used singly or as a matched pair for both illumination and detection can be used to generate an optical section. Under most conditions, the basic optical properties of an optically sectioning PAM are similar to those of rotating Nipkow discs. The method of pattern generation, however, is fundamentally different and allows arbitrary illumination patterns to be generated under programmable control, and sectioning strategies to be changed rapidly in response to specific experimental conditions. We report the features of a PAM incorporating a digital micromirror device, including the axial sectioning response to fluorescent thin films and the imaging of biological specimens. Three axial sectioning strategies were compared: line scans, dot lattice scans and pseudo-random sequence scans. The three strategies varied widely in light throughput, sectioning strength and robustness when used on real biological samples. The axial response to thin fluorescent films demonstrated a consistent decrease in the full width at half maximum (FWHM), accompanied by an increase in offset, as the unit cells defining the patterns grew smaller. Experimental axial response curves represent the sum of the response from a given point of illumination and cross-talk from neighbouring points. Cross-talk is minimized in the plane of best focus and when measured together with the single point response produces a decrease in FWHM. In patterns having constant throughput, there appears to be tradeoff between the FWHM and the size of the offset. The PAM was compared to a confocal laser scanning microscope using biological samples. The PAM demonstrated higher signal levels and dynamic range despite a shorter acquisition time. It also revealed more structures in x-z sections and less intensity drop-off with scanning depth.
机译:可编程阵列显微镜(PAM)的主要特征是图像平面中存在空间光调制器。可以单独使用一个空间光调制器或将其用作照明和检测的配对对,以生成光学部分。在大多数情况下,光学切片PAM的基本光学特性与旋转的Nipkow圆盘相似。然而,图案产生的方法本质上是不同的,并且允许在可编程控制下产生任意照明图案,并且响应于特定的实验条件,可以迅速改变切片策略。我们报告了包含数字微镜设备的PAM的功能,包括对荧光薄膜的轴向切片响应和生物标本的成像。比较了三种轴向切片策略:线扫描,点阵扫描和伪随机序列扫描。当用于实际生物样品时,这三种策略在光通量,切片强度和耐用性方面差异很大。对荧光薄膜的轴向响应表明,随着限定图案的晶胞变小,半高全宽(FWHM)持续减小,同时偏移增加。实验轴向响应曲线表示给定照明点的响应与相邻点的串扰的总和。在最佳聚焦平面上,串扰被最小化,与单点响应一起测量时,FWHM会降低。在具有恒定吞吐量的图案中,在FWHM和偏移量的大小之间似乎存在折衷。使用生物样品将PAM与共聚焦激光扫描显微镜进行比较。尽管采集时间较短,但PAM仍显示出较高的信号电平和动态范围。它还显示了x-z截面中的更多结构,并且随着扫描深度的变化强度下降更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号