首页> 外文期刊>Journal of Micromechanics and Microengineering >Design and simulation of bi-directional microfluid driving systems
【24h】

Design and simulation of bi-directional microfluid driving systems

机译:双向微流体驱动系统的设计与仿真

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Micro total analysis systems (muTAS) have been developed to perform a number of analytical processes involving chemical reactions, separation and sensing on a single chip. In medical and biomedical applications, muTAS must be designed considering special transport mechanisms to move samples and reagents through the microchannels in the system. For conventional micropumps, however, complicated relationships exist between the pumping mechanisms, the conditions under which the devices operate and the behavior of the multi-component fluids transported in these channels. A bi-directional microfluid driving system has been developed in this paper. This pneumatic system is an on-chip planar structure with no moving parts and does not require microfabricated heaters or electrodes. The pumping actuation is introduced to the microchannel fabricated in the chip by blowing an airflow through this device. The bi-directional driving module combines two individual components for suction and exclusion. The driving system provides a stable and flexible bi-directional microfluid driving control. The tunable parameters for adjusting the exclusion/suction ratios, such as the location of the inlet channel and the velocities of the airflow, have been observed in the numerical study. The optimal exclusion/suction ratio for the specific purpose of the driving system can be selected by changing the location of the microchannel to the reaction area for the sample/reagent. The velocity at the microchannel can be adjusted by varying the inlet velocities for the suction and exclusion components. For the presented design, no air conduit was employed to connect the servo-system to the driving system; therefore the packaging difficulty and leakage problem, which may arise in conventional systems, can be eliminated. The final airflow outlet was fixed in one direction so that it can prevent cross-contamination between the servo-system and the chip. The driving system is therefore particularly suited to microdevices for biochemical analysis. [References: 27]
机译:微型整体分析系统(muTAS)已经开发出来,可以在单个芯片上执行涉及化学反应,分离和传感的许多分析过程。在医学和生物医学应用中,必须在设计muTAS时考虑特殊的传输机制,以使样品和试剂通过系统中的微通道移动。然而,对于常规的微型泵,在泵送机构,设备操作的条件以及在这些通道中输送的多组分流体的行为之间存在复杂的关系。本文开发了一种双向微流体驱动系统。该气动系统是没有活动部件的芯片上平面结构,不需要微型加热器或电极。通过将气流吹过该装置将泵送致动引入到芯片中制造的微通道中。双向驱动模块将两个单独的组件组合在一起进行抽吸和排除。该驱动系统提供了稳定而灵活的双向微流体驱动控制。在数值研究中已经观察到了用于调节排除/吸入比的可调参数,例如入口通道的位置和气流速度。可以通过将微通道的位置更改为样品/试剂的反应区域,来选择用于驱动系统特定目的的最佳排除/抽吸比。可以通过改变吸入和排除组件的入口速度来调整微通道的速度。对于本设计,没有采用空气导管将伺服系统连接到驱动系统。因此,可以消除传统系统中可能出现的包装困难和泄漏问题。最终的气流出口固定在一个方向上,因此可以防止伺服系统和芯片之间的交叉污染。因此,该驱动系统特别适合用于生化分析的微型设备。 [参考:27]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号