...
首页> 外文期刊>Chemical Engineering & Technology: Industrial Chemistry -Plant Equipment -Process Engineering -Biotechnology >A Microfluidic Approach for a Continuous Crystallization of Drug Carrier Nanoparticles
【24h】

A Microfluidic Approach for a Continuous Crystallization of Drug Carrier Nanoparticles

机译:药物载体纳米颗粒连续结晶的微流控方法。

获取原文
获取原文并翻译 | 示例

摘要

Solid lipid nanoparticles (SLN) as a new generation of drug carrier systems for pharmaceutical applications are currently under intensive investigation. They can be prepared by melt-homogenization of a matrix lipid in surfactant-containing aqueous media. In the corresponding production sequence, the crystallization of the resulting lipid droplets to solid nanoparticles is a crucial step for reproducible product properties. Hitherto, melt crystallization in these dispersions is usually performed in a batchwise process under poorly defined cooling conditions, without much regard to the well-known aspects of heat transfer, homogeneity in the product mixture, and precise process control. In addition, these setups often only allow the application of low cooling rates. The use of high, well-defined cooling rates would, however, offer very interesting new possibilities for the manufacturing of such drug carrier systems. Due to their small volumes and superior heat and mass transfer performance, microfluidic devices ensure a precise setting and control of the optimum process conditions. In this study, a microfluidic process for the continuous melt crystallization of SLN suspensions is established, allowing for high and well-defined cooling rates. For various cooling rates, the crystallized SLN were analyzed by differential scanning calorimetry, X-ray diffraction, laser diffraction, and photon correlation spectroscopy. The samples were also analyzed after well-defined storage times in order to investigate the stability of the suspensions.
机译:固态脂质纳米颗粒(SLN)作为用于药物应用的新一代药物载体系统,目前正在深入研究中。它们可以通过将基质脂质在含有表面活性剂的水性介质中熔融均质化来制备。在相应的生产顺序中,所得脂质液滴结晶为固体纳米颗粒是可重现产品性能的关键步骤。迄今为止,这些分散体中的熔体结晶通常是在分批过程中在冷却条件不明确的条件下进行的,而没有过多考虑传热,产物混合物的均质性和精确过程控制的众所周知的方面。另外,这些设置通常仅允许应用低冷却速率。但是,使用高定义的冷却速率将为制造这种药物载体系统提供非常有趣的新可能性。由于其体积小以及出色的传热和传质性能,微流体设备可确保最佳工艺条件的精确设置和控制。在这项研究中,建立了SLN悬浮液连续熔融结晶的微流体过程,从而实现了高且明确的冷却速率。对于各种冷却速率,通过差示扫描量热法,X射线衍射,激光衍射和光子相关光谱法分析结晶的SLN。在明确定义的存储时间后还对样品进行了分析,以研究悬浮液的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号