首页> 外文期刊>Journal of Neurochemistry: Offical Journal of the International Society for Neurochemistry >GTP cyclohydrolase I feedback regulatory protein is expressed in serotonin neurons and regulates tetrahydrobiopterin biosynthesis.
【24h】

GTP cyclohydrolase I feedback regulatory protein is expressed in serotonin neurons and regulates tetrahydrobiopterin biosynthesis.

机译:GTP环水解酶I反馈调节蛋白在5-羟色胺神经元中表达,并调节四氢生物蝶呤的生物合成。

获取原文
获取原文并翻译 | 示例
           

摘要

Tetrahydrobiopterin, the coenzyme required for hydroxylation of phenylalanine, tyrosine, and tryptophan, regulates its own synthesis through feedback inhibition of GTP cyclohydrolase I (GTPCH) mediated by a regulatory subunit, the GTP cyclohydrolase feedback regulatory protein (GFRP). In the liver, L-phenylalanine specifically stimulates tetrahydrobiopterin synthesis by displacing tetrahydrobiopterin from the GTPCH-GFRP complex. To explore the role of this regulatory system in rat brain, we examined the localization of GFRP mRNA using double-label in situ hybridization. GFRP mRNA expression was abundant in serotonin neurons of the dorsal raphe nucleus but was undetectable in dopamine neurons of the midbrain or norepinephrine neurons of the locus coeruleus. Simultaneous nuclease protection assays for GFRP and GTPCH mRNAs showed that GFRP mRNA is most abundant within the brainstem and that the ratio of GFRP to GTPCH mRNA is much higher than in the ventral midbrain. Two species of GFRP mRNA differing by approximately 20 nucleotides in length were detected in brainstem but not in other tissues, with the longer, more abundant form being common to other brain regions. It is interesting that the pineal and adrenal glands did not contain detectable levels of GFRP mRNA, although GTPCH mRNA was abundant in both. Primary neuronal cultures were used to examine the role of GFRP-mediated regulation of GTPCH on tetrahydrobiopterin synthesis within brainstem serotonin neurons and midbrain dopamine neurons. L-Phenylalanine increased tetrahydrobiopterin levels in serotonin neurons to a maximum of twofold in a concentration-dependent manner, whereas D-phenylalanine and L-tryptophan were without effect. In contrast, tetrahydrobiopterin levels within cultured dopamine neurons were not altered by L-phenylalanine. The time course of this effect was very rapid, with a maximal response observed within 60 min. Inhibitors of tetrahydrobiopterin biosynthesis prevented the L-phenylalanine-induced increase in tetrahydrobiopterin levels. 7,8-Dihydroneopterin, a reduced pteridine capable of inhibiting GTPCH in a GFRP-dependent manner, decreased tetrahydrobiopterin levels in cultures of both serotonin and dopamine neurons. This inhibition was reversed by L-phenylalanine in serotonin but not in dopamine neurons. Our data suggest that GTPCH activity within serotonin neurons is under a tonic inhibitory tone mediated by GFRP and that tetrahydrobiopterin levels are maintained by the balance of intracellular concentrations of tetrahydrobiopterin and L-phenylalanine. In contrast, although tetrahydrobiopterin biosynthesis within dopamine neurons is also feedback-regulated, L-phenylalanine plays no role, and therefore tetrahydrobiopterin may have a direct effect on GTPCH activity.
机译:四氢生物蝶呤是苯丙氨酸,酪氨酸和色氨酸羟化所需的辅酶,它通过抑制GTP环水解酶I(GTP环水解酶反馈调节蛋白)介导的GTP环水解酶I(GTPCH)的反馈抑制作用来调节自身的合成。在肝脏中,L-苯丙氨酸通过从GTPCH-GFRP复合物中置换四氢生物蝶呤来特异性刺激四氢生物蝶呤的合成。为了探索该调节系统在大鼠脑中的作用,我们使用双标记原位杂交技术研究了GFRP mRNA的定位。 GFRP mRNA的表达在背缝核的5-羟色胺神经元中丰富,但在蓝斑中脑的多巴胺神经元或去甲肾上腺素神经元中未检测到。同时进行的GFRP和GTPCH mRNA的核酸酶保护试验表明,GFRP mRNA在脑干中含量最高,而GFRP与GTPCH mRNA的比例远高于腹中脑。在脑干中检出了两种长度相差约20个核苷酸的GFRP mRNA,而在其他组织中未检出,这是其他脑区常见的更长,更丰富的形式。有趣的是,尽管GTPCH mRNA含量都很高,但松果体和肾上腺均不含可检测水平的GFRP mRNA。原代神经元培养物用于检查GFRP介导的GTPCH调节对脑干5-羟色胺神经元和中脑多巴胺神经元内四氢生物蝶呤合成的作用。 L-苯丙氨酸以浓度依赖的方式将5-羟色胺神经元中的四氢生物蝶呤水平增加到最大值的两倍,而D-苯丙氨酸和L-色氨酸则没有作用。相反,L-苯丙氨酸不会改变多巴胺神经元内四氢生物蝶呤的水平。这种作用的时间过程非常迅速,在60分钟内观察到最大的响应。四氢生物蝶呤生物合成抑制剂可防止L-苯丙氨酸诱导的四氢生物蝶呤水平增加。 7,8-Dihydroneopterin,一种能够以GFRP依赖性方式抑制GTPCH的蝶呤,在5-羟色胺和多巴胺神经元培养物中的四氢生物蝶呤水平降低。血清素中的L-苯丙氨酸可逆转这种抑制作用,而多巴胺神经元则不能。我们的数据表明,5-羟色胺神经元内的GTPCH活性处于由GFRP介导的强音抑制音下,四氢生物蝶呤的水平由四氢生物蝶呤和L-苯丙氨酸的细胞内浓度平衡来维持。相反,尽管多巴胺神经元内四氢生物蝶呤的生物合成也受到反馈调节,但L-苯丙氨酸不起作用,因此四氢生物蝶呤可能对GTPCH活性具有直接影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号