【24h】

Glutathione and signal transduction in the mammalian CNS.

机译:哺乳动物中枢神经系统中的谷胱甘肽和信号转导。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The tripeptide glutathione (GSH) has been thoroughly investigated in relation to its role as antioxidant and free radical scavenger. In recent years, novel actions of GSH in the nervous system have also been described, suggesting that GSH may serve additionally both as a neuromodulator and as a neurotransmitter. In the present article, we describe our studies to explore further a potential role of GSH as neuromodulatoreurotransmitter. These studies have used a combination of methods, including radioligand binding, synaptic release and uptake assays, and electrophysiological recording. We report here the characteristics of GSH binding sites, the interrelationship of GSH with the NMDA receptor, and the effects of GSH on neural activity. Our results demonstrate that GSH binds via its gamma-glutamyl moiety to ionotropic glutamate receptors. At micromolar concentrations GSH displaces excitatory agonists, acting to halt their physiological actions on target neurons. At millimolar concentrations, GSH, acting through its free cysteinyl thiol group, modulates the redox site of NMDA receptors. As such modulation has been shown to increase NMDA receptor channel currents, this action may play a significant role in normal and abnormal synaptic activity. In addition, GSH in the nanomolar to micromolar range binds to at least two populations of binding sites that appear to be distinct from all known excitatory amino acid receptor subtypes. GSH bound to these sites is not displaceable by glutamatergic agonists or antagonists. These binding sites, which we believe to be distinct receptor populations, appear to recognize the cysteinyl moiety of the GSH molecule. Like NMDA receptors, the GSH binding sites possess a coagonist site(s) for allosteric modulation. Furthermore, they appear to be linked to sodium ionophores, an interpretation supported by field potential recordings in rat cerebral cortex that reveal a dose-dependent depolarization to applied GSH that is blocked by the absence of sodium but not by lowering calcium or by NMDA or (S)-2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate antagonists. The present data support a reevaluation of the role of GSH in the nervous system in which GSH may be involved both directly and indirectly in synaptic transmission. A full accounting of the actions of GSH may lead to more comprehensive understanding of synaptic function in normal and disease states.
机译:对三肽谷胱甘肽(GSH)作为抗氧化剂和自由基清除剂的作用已进行了彻底的研究。近年来,还已经描述了谷胱甘肽在神经系统中的新作用,这表明谷胱甘肽可能同时充当神经调节剂和神经递质。在本文中,我们描述了我们的研究,以进一步探索GSH作为神经调节剂/神经递质的潜在作用。这些研究使用了多种方法的组合,包括放射性配体结合,突触释放和摄取测定以及电生理记录。我们在这里报告GSH结合位点的特征,GSH与NMDA受体的相互关系以及GSH对神经活动的影响。我们的结果表明,GSH通过其γ-谷氨酰基部分与离子型谷氨酸受体结合。在微摩尔浓度下,谷胱甘肽取代了兴奋性激动剂,从而停止了它们对靶神经元的生理作用。在毫摩尔浓度下,GSH通过其游离的半胱氨酸硫醇基起作用,调节NMDA受体的氧化还原位点。由于已经显示出这种调节会增加NMDA受体通道电流,因此该作用可能在正常和异常突触活动中发挥重要作用。另外,纳摩尔至微摩尔范围内的GSH与至少两个似乎与所有已知的兴奋性氨基酸受体亚型不同的结合位点结合。与这些位点结合的GSH不能被谷氨酸能激动剂或拮抗剂置换。我们认为是不同的受体群体的这些结合位点似乎可以识别GSH分子的半胱氨酸部分。像NMDA受体一样,GSH结合位点具有一个变构调节的激动剂位点。此外,它们似乎与钠离子载体有关,这一解释得到大鼠大脑皮层中场电位记录的支持,该记录揭示了所施加的GSH的剂量依赖性去极化,该去极化被钠的缺乏阻止,但不被钙的降低或NMDA或( S)-2-氨基-3-羟基-5-甲基-4-异恶唑丙酸酯拮抗剂。目前的数据支持对谷胱甘肽在神经系统中的作用的重新评估,其中谷胱甘肽可能直接或间接参与突触传递。全面了解GSH的作用可能会导致更全面地了解正常状态和疾病状态下的突触功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号