...
首页> 外文期刊>Journal of Neurochemistry: Offical Journal of the International Society for Neurochemistry >Endogenous presynaptic nitric oxide supports an anterograde signaling in the central nervous system.
【24h】

Endogenous presynaptic nitric oxide supports an anterograde signaling in the central nervous system.

机译:内源性突触前一氧化氮支持中枢神经系统的顺行信号。

获取原文
获取原文并翻译 | 示例

摘要

The source size and density determine the extent of nitric oxide (NO) diffusion which critically influences NO signaling. In the brain, NO released from postsynaptic somas following NMDA-mediated activation of neuronal nitric oxide synthase (nNOS) retrogradely affects smaller presynaptic targets. By contrast, in guinea pig trigeminal motor nucleus (TMN), NO is produced presynaptically by tiny and disperse nNOS-containing terminals that innervate large nNOS-negative motoneurons expressing the soluble guanylyl-cyclase (sGC); consequently, it is uncertain whether endogenous NO supports an anterograde signaling between pre-motor terminals and postsynaptic trigeminal motoneurons. In retrogradely labeled motoneurons, we indirectly monitored NO using triazolofluorescein (DAF-2T) fluorescence, and evaluated sGC activity by confocal cGMP immunofluorescence. Multiple fibers stimulation enhanced NO content and cGMP immunofluorescence into numerous nNOS-negative motoneurons; NOS inhibitors prevented depolarization-induced effects, whereas NO donors mimicked them. Enhance of cGMP immunofluorescence required extracellular Ca(2+), a nNOS-physiological activator, and was prevented by inhibiting sGC, silencing neuronal activity or impeding NO diffusion. In conclusion, NO released presynaptically from multiple cooperative tiny fibers attains concentrations sufficient to activate sGC in many motoneurons despite of the low source/target size ratio and source dispersion; thus, endogenous NO is an effective anterograde neuromodulator. By adjusting nNOS activation, presynaptic Ca(2+) might modulate the NO diffusion field in the TMN.
机译:源的大小和密度决定了严重影响NO信号传导的一氧化氮(NO)扩散程度。在大脑中,NMDA介导的神经元一氧化氮合酶(nNOS)激活后从突触后躯体释放的NO逆行影响较小的突触前靶标。相比之下,在豚鼠三叉神经运动核(TMN)中,NO是由细小且分散的含nNOS的末端先突性产生的,该末端支配表达可溶性鸟苷酸环化酶(sGC)的大型nNOS阴性运动神经元。因此,不确定内源性NO是否支持运动前末梢与突触后三叉神经运动神经元之间的顺行信号传导。在逆行标记的运动神经元中,我们使用三唑荧光素(DAF-2T)荧光间接监测NO,并通过共聚焦cGMP免疫荧光评估sGC活性。多纤维刺激提高了NO含量和cGMP免疫荧光到许多nNOS阴性运动神经元中的能力; NOS抑制剂阻止了去极化诱导的作用,而NO供体则模仿了它们。 cGMP免疫荧光增强需要胞外Ca(2 +),nNOS生理激活剂,并且可以通过抑制sGC,沉默神经元活性或阻止NO扩散来阻止。总之,尽管源/靶尺寸比和源分散度低,但从多根协同细纤维先突释放的NO的浓度足以激活许多运动神经元中的sGC。因此,内源性NO是一种有效的顺行神经调节剂。通过调整nNOS激活,突触前Ca(2+)可能会调制TMN中的NO扩散场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号