...
首页> 外文期刊>Journal of Materials Engineering and Performance >Strain-Induced Porosity during Cogging of Extra-Low Interstitial Grade Ti-6Al-4V
【24h】

Strain-Induced Porosity during Cogging of Extra-Low Interstitial Grade Ti-6Al-4V

机译:超低间隙等级Ti-6Al-4V的齿槽效应中的应变诱导孔隙率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The phenomenon of strain-induced porosity (SIP) in extra4ow interstitial (ELI) grade Ti-6Al-4V with a transformed #beta# starting microstructure is investigated to understand its origin during #alpha#-#beta# cogging. For this purpose, the constitutive behavior of the material is coupled with finite-element method (FEM) simulations of the cogging process. Two distinct types of SIP relevant to cogging speeds and temperatures, viz., shear cracking and void nucleation, are identified. While the former occurs at the prior #beta# grain boundaries below 825 deg C, the latter occurs at the prior colony boundaries when the deformation temperature is close to the #beta# transus. The FEM simulations have shown that deformation conditions existing in the midregion of the billet are favorable for void nucleation. The mechanism of void growth in the presence of tensile residual stress and temperature during resoaking is modeled using the Cocks-Ashby coupled growth model. Repeated cogging and resoaking steps cause multiplication of void population in large numbers. To avoid both types of defects in any region of the billet, a practical solution has been developed by introducing a differential temperature profile from the surface to the center, and the validity of the proposed scheme is verified with FEM heat-transfer simulations.
机译:研究了在具有过渡的#beta#起始微观结构的过渡间隙(ELI)等级Ti-6Al-4V中的应变诱导孔隙率(SIP)现象,以了解其在#alpha#-#beta#齿槽效应中的起源。为此,将材料的本构行为与齿槽加工的有限元方法(FEM)仿真相结合。确定了与齿槽速度和温度相关的两种不同类型的SIP,即剪切裂纹和空隙形核。前者出现在低于825摄氏度的先前#beta#晶界处,而后者在变形温度接近#beta#瞬态时发生在先前菌落界处。有限元模拟表明,坯料中部存在的变形条件有利于空洞形核。使用Cocks-Ashby耦合生长模型对在重做过程中存在拉伸残余应力和温度的情况下空隙生长的机理进行了建模。重复的齿槽加工和重浸步骤会导致大量的空隙人口倍增。为了避免在坯料的任何区域出现两种类型的缺陷,通过引入从表面到中心的不同温度分布,开发了一种实用的解决方案,并通过FEM传热仿真验证了该方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号