...
首页> 外文期刊>Journal of Materials Engineering and Performance >Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor
【24h】

Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor

机译:气金属电弧焊(GMAW)工艺的优化以实现MIL A46100钢焊接全金属铠装的最大弹道极限

获取原文
获取原文并翻译 | 示例
           

摘要

Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.
机译:我们最近为常规的气体保护金属电弧焊(GMAW)焊接工艺开发的多物理场计算模型已在其预测能力方面进行了升级,该预测能力与用于实现焊缝内最大弹道极限的工艺优化有关。原始模型包含六个模块,每个模块专用于处理GMAW工艺的特定方面,即(a)焊枪的电动特性; (b)辐射/对流控制的电弧从电弧到工件的热传递,以及从填充金属消耗电极到焊缝的质量传递; (c)预测GMAW焊接过程中焊接区域内热场和机械场的时间演变和空间分布; (d)整个焊接区域材料微观结构的时间演变和空间分布; (e)焊接材料力学性能的空间分布; (f)弹道极限的空间分布。在当前工作中,通过引入第七个模块对模型进行了升级,认识到以下事实:识别相对于在焊接区域内达到最大弹道极限的最佳GMAW工艺参数需要使用高级优化和统计数据敏感性分析方法和工具。接下来,将升级后的GMAW工艺模型应用于MIL A46100(典型的高硬度铠装级马氏体钢)工件的对接焊时,该工件使用由相同材料制成的填充金属电极。发现有关MIL A46100对接焊缝中材料微观结构的空间分布和控制弹道极限的机械性能的升级GMAW工艺模型的预测与一般预期和先前的观察结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号