首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >A novel ternary organic microwire radial heterojunction with high photoconductivity
【24h】

A novel ternary organic microwire radial heterojunction with high photoconductivity

机译:具有高光电导性的新型三元有机微丝径向异质结

获取原文
获取原文并翻译 | 示例
       

摘要

We fabricated a unique ternary organic hybrid microwire radial heterojunction by a facile method. First, 4,4',4 ''-tri(N-carbazolyl)triphenylamine (TCTA) microwires were prepared by solvent-evaporation-assisted self-assembly. Then, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles were adsorbed onto the surface of the TCTA microwires, forming interesting corncob-like binary hybrid microwires. Finally, (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) was adsorbed on the surface of the binary hybrid microwires to form ternary hybrid microwire radial heterojunctions. The thermally activated delayed fluorescence (TADF) material 4CzIPN was introduced into the donor-acceptor (D-A) system to form the ternary hybrid microwire radial heterojunction for the first time. The morphology has been confirmed by fluorescence microscopy, SEM and TEM. Interestingly, we found that this ternary hybrid microwire exhibited efficient photoconductivity by fabricating a bottom contact device; the photocurrent increased by more than 3 times compared with the reference device without 4CzIPN. By examining some reference devices, it can be inferred that the enhancement of the photoconductivity originates from the reversed intersystem crossing (RISC) process in 4CzIPN. This process can promote the formation of triplet excitons, thereby increasing the charge carrier concentration in the conductive channel of the microwire radial heterojunction. These high photoconductivity ternary microwires provide an efficient approach to improve the performance of photovoltaic devices and show promise for applications in organic integrated optoelectronics.
机译:我们通过一种简便的方法制造了独特的三元有机杂化微线径向异质结。首先,通过溶剂蒸发辅助自组装制备了4,4',4''-三(N-咔唑基)三苯胺(TCTA)微丝。然后,将[6,6]-苯基-C61-丁酸甲酯(PCBM)纳米颗粒吸附到TCTA微丝的表面,形成有趣的玉米芯状二元杂化微丝。最后,将(4s,6s)-2,4,5,6-四(9H-咔唑-9-基)间苯二甲腈(4CzIPN)吸附在二元杂化微丝的表面上,形成三元杂化微丝径向异质结。将热活化延迟荧光(TADF)材料4CzIPN首次引入供体-受体(D-A)系统中,以形成三元杂化微线径向异质结。形态已通过荧光显微镜,SEM和TEM确认。有趣的是,我们发现这种三元混合微线通过制造底部接触器件表现出有效的光电导性。与没有4CzIPN的参考设备相比,光电流增加了3倍以上。通过检查一些参考设备,可以推断出光电导率的增强源自4CzIPN中的反向系统间交叉(RISC)过程。该过程可以促进三重态激子的形成,从而增加微线径向异质结的导电通道中的电荷载流子浓度。这些高光电导率的三元微线提供了一种有效的方法来改善光伏器件的性能,并显示出在有机集成光电中的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号