首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Determining dilute-limit solvus boundaries in multi-component systems using defect energetics: Na in PbTe and PbS
【24h】

Determining dilute-limit solvus boundaries in multi-component systems using defect energetics: Na in PbTe and PbS

机译:使用缺陷能学确定多组分系统中的稀疏极限固溶边界:PbTe和PbS中的Na

获取原文
获取原文并翻译 | 示例
       

摘要

Defect calculations are standard practice for understanding the electronic structure of dopants and alloying elements in semiconductors and insulators. However, these calculations have untapped potential to quantitatively determine thermodynamic properties of doped semiconductor systems. We present a methodology which couples defect energetics and compound formation energies to determine defect concentrations in a host material as functions of temperature and chemical equilibrium. From these defect concentrations we find the solvus boundaries of the host phase in a multi-dimensional composition space. As an example, we present first-principles calculations of the solvus boundaries of PbTe and PbS in Na-Pb-Te and Na-Pb-S. We calculate the formation energies of compounds in Na-Pb-S-Te and the defect energetics of a large number of intrinsic and Na-containing defects in PbTe and PbS. With these, we obtain equilibrium defect concentrations and solvus boundaries for PbTe and PbS. We find vacancies are the lowest-energy intrinsic defects in PbTe and PbS. We also find Na substituted for Pb is the lowest-energy Na defect in both PbTe and PbS. We find that the PbTe solvus boundary in Na-Pb-Te is a sharply peaked function of composition. We find negative defect formation energies for Na on Pb in PbS, suggesting the existence of a ternary compound in the Na-Pb-S system. The methodology presented herein is a general and straightforward way to extend the use of defect calculations from making inferences about the electronic structure of dopants to calculating solvus boundaries in multicomponent systems.
机译:缺陷计算是理解半导体和绝缘体中掺杂剂和合金元素的电子结构的标准实践。然而,这些计算具有定量确定掺杂半导体系统的热力学性质的潜力。我们提出了一种结合缺陷能量和化合物形成能来确定主体材料中缺陷浓度的方法,该缺陷浓度是温度和化学平衡的函数。从这些缺陷浓度,我们发现了多维组成空间中主体相的固溶边界。例如,我们介绍了Na-Pb-Te和Na-Pb-S中PbTe和PbS的固溶边界的第一性原理计算。我们计算了Na-Pb-S-Te中化合物的形成能以及PbTe和PbS中大量固有和含Na缺陷的缺陷能。有了这些,我们获得了PbTe和PbS的平衡缺陷浓度和固溶边界。我们发现空位是PbTe和PbS中能量最低的固有缺陷。我们还发现,替代Pb的Na是PbTe和PbS中能量最低的Na缺陷。我们发现,Na-Pb-Te中的PbTe固溶边界是组成的尖峰函数。我们发现PbS中Pb上的Na存在负缺陷形成能,这表明Na-Pb-S系统中存在三元化合物。本文介绍的方法学是将缺陷计算的使用从对掺杂物的电子结构进行推断到计算多组分系统中固溶边界的通用直接方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号