...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Semiconducting properties of spinel tin nitride and other IV3N4 polymorphs
【24h】

Semiconducting properties of spinel tin nitride and other IV3N4 polymorphs

机译:尖晶石氮化锡和其他IV3N4多晶型物的半导体特性

获取原文
获取原文并翻译 | 示例
           

摘要

Tin nitride, Sn3N4, is a semiconductor composed of common elements with a band gap in the visible range, making it a candidate for optical and electronic applications. In this work, the semiconducting properties of tin nitride are explored by thin-film experiments and first-principles theory to evaluate the prospects of this material for optoelectronic applications. Calculations of related group IV nitride polymorphs provide additional insight into the properties and challenges associated with this class of semiconductors. Experimentally, in Sn3N4 polycrystalline thin films the electron concentration was found to be 10(18) cm(-3) with Hall mobility of similar to 1 cm(2) V-1 s(-1) and a minority carrier (holes) diffusion length of 50-100 nm. The optical absorption onset was determined at 1.6 eV and an ionization potential was measured at 5.9-6.0 eV. From theory, a direct band gap of 1.54 eV was determined with weak dipole-forbidden lowest energy transitions and the ionization potential was determined to be 6.5 eV, both in reasonable agreement with the experiments. Calculations also predict an exceptionally small electron effective mass (0.18 m(0)) and a large hole effective mass (12.9 m(0)), which may be in part responsible for the short hole diffusion length. To elucidate the origin of the heavy holes in Sn3N4, elemental and crystallographic trends in electronic structure and thermochemical properties are calculated in the IV3N4 polymorphs. It was found that hole effective masses generally increase down the period and are structure-dependent, while electron effective masses decrease down the period and show no strong structural trends. These results suggest that changing composition in the group-IV nitride alloys will have a large impact on the fundamental semiconductor properties such as carrier effective masses, and provide other insight into the materials chemistry of Sn3N4 and the IV3N4 family.
机译:氮化锡Sn3N4是一种由常见元素组成的半导体,其带隙在可见光范围内,使其成为光学和电子应用的候选材料。在这项工作中,通过薄膜实验和第一原理理论探索了氮化锡的半导体性能,以评估这种材料在光电应用中的前景。相关IV族氮化物多晶型物的计算提供了与此类半导体相关的特性和挑战的更多见解。实验上,在Sn3N4多晶薄膜中,发现电子浓度为10(18)cm(-3),霍尔迁移率类似于1 cm(2)V-1 s(-1),少数载流子(空穴)扩散长度为50-100 nm。在1.6eV处确定光吸收开始,并且在5.9-6.0eV处测量电离电势。从理论上讲,确定的1.54 eV的直接带隙具有弱的偶极子禁止的最低能量跃迁,并且电离电势确定为6.5 eV,两者均与实验合理吻合。计算还预测出异常小的电子有效质量(0.18 m(0))和大的空穴有效质量(12.9 m(0)),这可能部分是造成短空穴扩散长度的原因。为了阐明Sn3N4中重空穴的起源,在IV3N4多晶型物中计算了电子结构和热化学性质的元素和晶体学趋势。已经发现,空穴有效质量通常在此期间下增加并且是结构依赖性的,而电子有效质量在该期间下减少并且没有显示出强烈的结构趋势。这些结果表明,IV族氮化物合金中成分的变化将对诸如载流子有效质量之类的基本半导体性能产生很大影响,并为Sn3N4和IV3N4族的材料化学提供其他见解。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号