...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Enhanced oxygen reduction and evolution by in situ decoration of hematite nanoparticles on carbon nanotube cathodes for high-capacity nonaqueous lithium-oxygen batteries
【24h】

Enhanced oxygen reduction and evolution by in situ decoration of hematite nanoparticles on carbon nanotube cathodes for high-capacity nonaqueous lithium-oxygen batteries

机译:通过在大容量非水锂氧电池的碳纳米管阴极上原位装饰赤铁矿纳米颗粒,增强了氧的还原和释放

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Lithium-oxygen (Li-O-2) batteries are considered to be the next generation energy storage technology due to their extremely high theoretical energy density and the simplicity of the battery cells. However, a large energy density can be obtained only with a slow discharge-charge rate, and quickly decreases upon cycling. These drawbacks can be attributed to the large overpotential and sluggish kinetics of the oxygen reduction and evolution reactions. To overcome the current problems, recent research has focused on developing catalysts made of inexpensive metal oxides and carbonaceous materials in addition to precious metals, but the role of non-precious metal catalysts in the battery performance is still largely unexplored. Here we present kinetic studies and comparative evaluation of enhanced oxygen reduction and evolution reactions with carbon nanotube (CNT) arrays containing in situ decorated alpha-Fe2O3 nanoparticles as both a binder-free catalyst and a cathode for nonaqueous Li-O-2 batteries. Our Fe2O3-decorated CNTs greatly helped to form Li2O involving the four-electron reduction pathway in addition to Li2O2 commonly formed via the one/two-electron reduction pathway, and thereby delivered a very large capacity of 26.5 A h g(-1) at the 1st discharge and a relatively long cycling performance (48 cycles with a capacity limit of 1.5 A h g(-1)). Unique and branch-like nanocrystalline Li2O and Li2O2 after discharge would have lowered the overpotential for the oxygen evolution reaction. Our detailed compositional and morphological studies will be of great help to further improve the cycling performance as well as develop better non-precious metal catalysts and electrodes for Li-O-2 batteries.
机译:锂氧(Li-O-2)电池由于其极高的理论能量密度和电池单元的简单性而被视为下一代能量存储技术。但是,只有在缓慢的充电速度下才能获得大的能量密度,并且在循环时迅速降低能量密度。这些缺点可归因于氧还原和放出反应的大的过电位和缓慢的动力学。为了克服当前的问题,最近的研究集中在开发由除贵金属之外的廉价的金属氧化物和碳质材料制成的催化剂,但是在很大程度上仍未探索非贵金属催化剂在电池性能中的作用。在这里,我们介绍了动力学研究和比较评估,该研究利用包含原位装饰的α-Fe2O3纳米粒子作为无粘合剂催化剂和非水Li-O-2电池阴极的碳纳米管(CNT)阵列,增强了氧的还原和放出反应。用Fe2O3修饰的CNT除了通过单电子/二电子还原途径通常形成的Li2O2以外,还极大地帮助形成了涉及四电子还原途径的Li2O,从而在26.5 A hg(-1)时具有非常大的容量。第一次放电和较长的循环性能(48个循环,容量极限为1.5 A hg(-1))。放电后独特且分支状的纳米晶Li2O和Li2O2会降低氧释放反应的过电位。我们详细的组成和形态研究将为进一步改善循环性能以及开发更好的非贵金属催化剂和Li-O-2电池电极提供很大帮助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号