...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Demonstration of 99% capacity retention in Li/S batteries with a porous hollow carbon cap nanofiber-graphene structure through a semi-empirical capacity fading model
【24h】

Demonstration of 99% capacity retention in Li/S batteries with a porous hollow carbon cap nanofiber-graphene structure through a semi-empirical capacity fading model

机译:通过半经验容量衰减模型论证具有多孔空心碳帽纳米纤维-石墨烯结构的Li / S电池的99%容量保持率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Lithium/sulfur batteries are a promising candidate for energy storage as they are capable of providing higher energy density in comparison to conventional Li-ion batteries. Here a rigorous numerical model is developed to predict the capacity retention of Li/S batteries discharged at different rates by taking into account the polysulfide (PS) shuttling effect for various nanostructured cathodes. In a numerical model, capacity fading of the cell is considered to be affected by the concentration of sulfur dissolved into the electrolyte and deposited on the anode as a Solid Electrolyte Interphase (SEI) layer. Our approach considers SEI layer formation as the main factor that dominates capacity fading over initial cycles (50 cycles). Equivalent Porosity (EP) is determined for various nanostructures and the model asset structures with smaller EP result in smoother capacity fading over cycling performance. The mean value of percentage error between simulation results and experimental capacity in all analyzed structures is less than 5%, except for mesoporous carbon at high discharge rates (1C). Using simulation results we propose Porous Hollow Carbon cap Nanofiber-Graphene (PHCN-G) as a highly efficient nanostructured cathode with a minimum shuttling effect and >99% capacity retention for long-cycling lifetime batteries.
机译:锂/硫电池是能量存储的有前途的候选者,因为与传统的锂离子电池相比,锂/硫电池能够提供更高的能量密度。在这里,通过考虑各种纳米结构阴极的多硫化物(PS)穿梭效应,建立了严格的数值模型来预测以不同速率放电的Li / S电池的容量保持率。在数值模型中,电池的容量衰减被认为受溶解到电解质中并作为固体电解质中间相(SEI)层沉积在阳极上的硫浓度的影响。我们的方法将SEI层形成视为主导初始周期(50个周期)内容量衰减的主要因素。确定了各种纳米结构的当量孔隙率(EP),具有较小EP的模型资产结构导致容量在循环性能方面更平滑。在所有分析的结构中,模拟结果与实验容量之间的百分比误差平均值小于5%,但高放电速率(1C)下的中孔碳除外。使用模拟结果,我们提出了多孔空心碳帽纳米纤维石墨烯(PHCN-G)作为高效的纳米结构阴极,具有最小的穿梭效应和大于99%的容量保持能力,可长期使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号