首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Thermodynamic stability and transport properties of tavorite LiFeSO4F as a cathode material for lithium-ion batteries
【24h】

Thermodynamic stability and transport properties of tavorite LiFeSO4F as a cathode material for lithium-ion batteries

机译:铁酸锂LiFeSO4F作为锂离子电池正极材料的热力学稳定性和传输性能

获取原文
获取原文并翻译 | 示例
           

摘要

First principles computation methods play an important role in developing and optimizing new energy storage and conversion materials. The thermodynamic stability, transport properties of the carriers and the lithium diffusion mechanisms of LiFeSO4F compounds are calculated by using the first principles computation. According to the calculated formation enthalpies and electronic properties, it can be concluded that both LiFeSO4F and delithiated FeSO4F have high thermodynamic stability during cycling. Band structure analysis reveals that the conduction and valence bands that are mainly composed of Fe-3d states are rather localized, leading to large band gaps and effective masses of the carriers. LiFeSO4F and FeSO4F thus exhibit poor electronic conductivities. To improve the electronic conductance of the materials, introduction of delocalized states in the band gap region via doping or nano-crystallization of the electrode material is still necessary. Further investigations on lithium diffusion dynamics suggest that suitable amounts of lithium vacancies at the 2i sites are particularly crucial. Under high lithium concentration conditions, these vacancies are very helpful to initiate the transfer of lithium into the empty positions by eliminating the Li-Li repulsions and then activate the diffusion of lithium through the channels. While under low lithium concentration conditions, they can act as intermediate sites effectively for several high-speed diffusion channels. As the calculated activation energies for the possible diffusion paths (0.185-0.563 eV) are very small, LiFeSO4F and FeSO4F thus show excellent ionic conductance.
机译:第一性原理计算方法在开发和优化新的储能和转换材料中起着重要作用。利用第一性原理计算法计算了LiFeSO4F化合物的热力学稳定性,载体的输运性质和锂的扩散机理。根据计算的形成焓和电子性质,可以得出结论,LiFeSO4F和去锂化的FeSO4F在循环过程中均具有较高的热力学稳定性。能带结构分析表明,主要由Fe-3d态组成的导带和价带相当局限,从而导致较大的带隙和载流子的有效质量。因此,LiFeSO4F和FeSO4F表现出较差的电子电导率。为了改善材料的电子电导,仍然需要通过电极材料的掺杂或纳米结晶在带隙区域中引入离域态。对锂扩散动力学的进一步研究表明,2i位的锂空位的适量特别重要。在高锂浓度条件下,这些空位通过消除Li-Li排斥力然后激活锂通过通道的扩散,非常有助于将锂转移到空位。在低锂浓度条件下,它们可以有效地充当多个高速扩散通道的中间位。由于针对可能的扩散路径(0.185-0.563 eV)计算出的活化能非常小,因此LiFeSO4F和FeSO4F显示出极好的离子电导率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号