...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Fabrication and structural optimization of porous single-crystal alpha-Fe2O3 microrices for high-performance lithium-ion battery anodes
【24h】

Fabrication and structural optimization of porous single-crystal alpha-Fe2O3 microrices for high-performance lithium-ion battery anodes

机译:高性能锂离子电池阳极多孔单晶α-Fe2O3微粉的制备和结构优化

获取原文
获取原文并翻译 | 示例
           

摘要

Three-dimensional (3D) porous frameworks have shown great promise in the field of lithium-ion batteries (LIBs). However, the size effects of 3D porous frameworks on the structural and functional optimization are rarely reported. Herein, porous single-crystal alpha-Fe2O3 microrices synthesized through a facile one-pot hydrothermal method have been developed as a model system to investigate the correlations between the pore structure and LIB performance. A top-down chemical etching method was used to control the pore size and porosity of alpha-Fe2O3 microrices simultaneously over a wide range.alpha-Fe2O3 porous microrices were further coated with carbon to stabilize the structure. Electrochemical characterization shows that the increase of the pore size and total porosity leads to a higher specific capacity but poorer cycling performance. Carbon coating on the surface of alpha-Fe2O3 microrices significantly enhances the structural stability of particles and improves the cyclability of batteries. The obtained alpha-Fe2O3@C porous microrices exhibit a high capacity of similar to 1107 mA h g(-1) at a current density of 200 mA g(-1), 83% capacity retention after 100 cycles and an excellent rate capability, which are among the best ones reported so far for alpha-Fe2O3 electrodes. Our results provide a general structural optimization strategy for porous oxides for high performance LIB anodes.
机译:三维(3D)多孔框架在锂离子电池(LIB)领域已显示出巨大的希望。但是,很少报道3D多孔框架对结构和功能优化的尺寸影响。在此,已经开发了通过简便的一锅水热法合成的多孔单晶α-Fe2O3微生物作为模型系统,以研究孔结构与LIB性能之间的相关性。采用自顶向下的化学刻蚀方法,可以同时在较宽的范围内控制α-Fe2O3微粒的孔径和孔隙率。进一步在α-Fe2O3多孔微粒上涂覆碳以稳定结构。电化学表征表明,孔径和总孔隙率的增加导致较高的比容量,但循环性能较差。 α-Fe2O3微粒表面的碳涂层显着增强了颗粒的结构稳定性,并改善了电池的循环性。所获得的α-Fe2O3@ C多孔微粉在200 mA g(-1)的电流密度下表现出与1107 mA hg(-1)相似的高容量,100次循环后83%的容量保持率和出色的倍率能力,是迄今为止报道的有关α-Fe2O3电极的最佳电极之一。我们的结果为高性能LIB阳极的多孔氧化物提供了一种通用的结构优化策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号