...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Manganese dioxide-anchored three-dimensional nitrogen-doped graphene hybrid aerogels as excellent anode materials for lithium ion batteries
【24h】

Manganese dioxide-anchored three-dimensional nitrogen-doped graphene hybrid aerogels as excellent anode materials for lithium ion batteries

机译:二氧化锰锚固的三维氮掺杂石墨烯混合气凝胶,是锂离子电池的优异负极材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The capacity of manganese dioxide (MnO2) deteriorates with cycling due to the irreversible changes induced by the repeated lithiation and delithiation processes. To overcome this drawback, MnO2itrogen-doped graphene hybrid aerogels (MNGAs) were prepared via a facile redox process between KMnO4 and carbon within nitrogen-doped graphene hydrogels. The three-dimensional nitrogen-doped graphene hydrogels were prepared and utilized as matrices for MnO2 deposition. The MNGAs-120 obtained after a deposition time of 120 min delivered a very high discharge capacity of 909 mA h g(-1) after 200 cycles at a current density of 400 mA g(-1), in sharp contrast to only 280 and 70 mA h g(-1) delivered from nitrogen-doped graphene aerogels and MnO2. This discharge capacity is superior to that of the previously reported MnO2/carbon based hybrid materials. This material also exhibited an excellent rate capability and cycling performance. Its superior electrochemical performance can be ascribed to the synergistic interaction between uniformly dispersed MnO2 particles with high capacity and the conductive three-dimensional nitrogen-doped graphene network with a large surface area and an interconnected porous structure.
机译:由于重复的锂化和脱锂过程引起的不可逆变化,二氧化锰(MnO2)的容量随循环而降低。为了克服这个缺点,通过在氮掺杂石墨烯水凝胶中的KMnO4和碳之间的简便氧化还原工艺制备了MnO2 /氮掺杂石墨烯混合气凝胶(MNGA)。制备了三维氮掺杂石墨烯水凝胶,并将其用作MnO2沉积的基质。在120分钟的沉积时间之后获得的MNGAs-120在200次循环后以400 mA g(-1)的电流密度提供了909 mA hg(-1)的非常高的放电容量,与之相反,只有280和70 mA hg(-1)从掺氮石墨烯气凝胶和MnO2输送。该放电容量优于先前报道的基于MnO2 /碳的杂化材料。该材料还表现出优异的速率能力和循环性能。其优异的电化学性能归因于高容量的均匀分散的MnO2颗粒与具有大表面积和互连的多孔结构的导电三维氮掺杂石墨烯网络之间的协同相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号