...
首页> 外文期刊>Journal of Molecular Biology >FREE ENERGIES OF AMINO ACID SIDE-CHAIN ROTAMERS IN ALPHA-HELICES, BETA-SHEETS AND ALPHA-HELIX N-CAPS
【24h】

FREE ENERGIES OF AMINO ACID SIDE-CHAIN ROTAMERS IN ALPHA-HELICES, BETA-SHEETS AND ALPHA-HELIX N-CAPS

机译:氨基酸-侧链旋转异构体在Alpha-Helies,Beta-Sheets和Alpha-Helix N-Caps中的自由能

获取原文
获取原文并翻译 | 示例

摘要

Scales have previously been determined for the entropic cost of restricting amino acid side-chain rotations upon protein folding, giving the rule of thumb that the entropic cost of restricting a single side-chain bond is approximate to 0.5 kcal mol(-1). However, this result does not consider the distinct preferences shown by amino acid side-chains for particular side-chain chi 1 angles in the folded protein. For example, Glu in an alpha-helix has chi 1 4% gauche(-) (g(-)), 39% trans (t) and 58% gauche(+) (g(+)) showing that it is most favourable to restrict Glu chi 1 as g(+) in a helix while g(-) is least favoured. The change in side-chain conformational entropy is the same in both cases, but the free energy of each rotamer is different. Here, we determine the energies of every amino acid chi 1 rotamer in alpha-helices, beta-sheets and alpha-helix N-caps and each chi 1 chi 2 rotamer pair in helices and sheets. The calculation uses observed rotamer distributions in secondary structure and the coil state, together with experimentally determined free energy changes for secondary structure formation. The results are sets of rotamer energies within a secondary structure that can be directly compared to each other. For example, we conclude that Tyr is the most stable residue in a beta-sheet if only the trans rotamer is accessible; if only the gauche-conformation is available, Thr would be the most stabilising. Previously published scales of amino acid preferences for secondary structure are weighted averages of rotamer energies and therefore imply that Thr is the most stabilising substitution in a beta-sheet in any side-chain conformation. Both side-chain conformational entropies and intrinsic secondary structure preferences are subsumed within our data; the results presented here should therefore be used in preference to both side-chain conformational entropies and intrinsic secondary structure preferences when the rotamer occupied in the folded state is known. The results may be useful in protein engineering, simulations of binding and folding, prediction of protein stability and peptide binding energies, and identification of incorrectly folded structures. (C) 1997 Academic Press Limited. [References: 21]
机译:先前已确定了蛋白质折叠时限制氨基酸侧链旋转的熵成本的规模,从而得出经验法则,限制单个侧链键的熵成本约为0.5 kcal mol(-1)。但是,该结果并未考虑氨基酸侧链对于折叠蛋白中特定侧链chi 1角所表现出的独特偏好。例如,α-螺旋中的Glu的chi 1 4%gauche(-)(g(-)),39%trans(t)和58%gauche(+)(g(+))表明它是最有利的将Glu chi 1限制为螺旋形式的g(+),而最不喜欢g(-)。在两种情况下,侧链构象熵的变化是相同的,但是每个旋转异构体的自由能是不同的。在这里,我们确定α-螺旋,β-折叠和α-螺旋N-帽中每个氨基酸chi 1旋转异构体的能量,以及螺旋和片中每个chi 1 chi 2旋转异构体对的能量。该计算使用观察到的二级结构和盘绕状态下的旋转异构体分布,以及实验确定的二级结构形成的自由能变化。结果是在二级结构中可以直接相互比较的一组旋转异构体能量。例如,我们得出结论,如果仅反式旋转异构体可及,则Tyr是β-折叠中最稳定的残基。如果只有gauche构象可用,Thr将是最稳定的。先前公布的二级结构氨基酸偏爱等级是旋转异构体能量的加权平均值,因此暗示Thr是任何侧链构象中β-折叠中最稳定的取代基。侧链构象熵和固有二级结构偏好都包含在我们的数据中;因此,当已知在折叠状态下占据的旋转异构体时,此处给出的结果应优先于侧链构象熵和固有二级结构偏好。该结果可能对蛋白质工程,结合和折叠的模拟,蛋白质稳定性和肽结合能的预测以及错误折叠结构的鉴定有用。 (C)1997 Academic Press Limited。 [参考:21]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号