...
首页> 外文期刊>Journal of Molecular Biology >DNA Binding and Bending by HMG Boxes: Energetic Determinants of Specificity.
【24h】

DNA Binding and Bending by HMG Boxes: Energetic Determinants of Specificity.

机译:HMG盒的DNA结合和弯曲:特异性的能量决定因素。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To clarify the physical basis of DNA binding specificity, the thermodynamic properties and DNA binding and bending abilities of the DNA binding domains (DBDs) of sequence-specific (SS) and non-sequence-specific (NSS) HMG box proteins were studied with various DNA recognition sequences using micro-calorimetric and optical methods. Temperature-induced unfolding of the free DBDs showed that their structure does not represent a single cooperative unit but is subdivided into two (in the case of NSS DBDs) or three (in the case of SS DBDs) sub-domains, which differ in stability. Both types of HMG box, most particularly SS, are partially unfolded even at room temperature but association with DNA results in stabilization and cooperation of all the sub-domains. Binding and bending measurements using fluorescence spectroscopy over a range of ionic strengths, combined with calorimetric data, allowed separation of the electrostatic and non-electrostatic components of the Gibbs energies of DNA binding, yielding their enthalpic and entropic terms and an estimate of their contributions to DNA binding and bending. In all cases electrostatic interactions dominate non-electrostatic in the association of a DBD with DNA. The main difference between SS and NSS complexes is that SS are formed with an enthalpy close to zero and a negative heat capacity effect, while NSS are formed with a very positive enthalpy and a positive heat capacity effect. This indicates that formation of SS HMG box-DNA complexes is specified by extensive van der Waals contacts between apolar groups, i.e. a more tightly packed interface forms than in NSS complexes. The other principal difference is that DNA bending by the NSS DBDs is driven almost entirely by the electrostatic component of the binding energy, while DNA bending by SS DBDs is driven mainly by the non-electrostatic component. The basic extensions of both categories of HMG box play a similar role in DNA binding and bending, making solely electrostatic interactions with the DNA.
机译:为了阐明DNA结合特异性的物理基础,对序列特异性(SS)和非序列特异性(NSS)HMG盒蛋白的DNA结合域(DBD)的热力学性质以及DNA结合和弯曲能力进行了研究。 DNA识别序列使用微量量热法和光学方法。温度诱导的游离DBD展开显示,它们的结构并不代表单个协作单元,而是细分为两个(对于NSS DBD而言)或三个(对于SS DBD而言)稳定性不同的子域。两种类型的HMG盒,最特别是SS,即使在室温下也会部分展开,但与DNA结合会导致所有子域的稳定和协同作用。使用荧光光谱仪在一系列离子强度下进行结合和弯曲测量,并结合量热数据,可以分离DNA结合Gibbs能量的静电和非静电成分,得出它们的焓和熵项,并估算它们对DNA结合和弯曲。在所有情况下,在DBD与DNA的结合中,静电相互作用都占主导地位。 SS和NSS配合物之间的主要区别在于,SS形成时具有接近零的焓和负的热容效应,而NSS形成时具有非常正的焓和正的热容效应。这表明SS HMG盒-DNA复合物的形成是通过非极性基团之间的广泛范德华接触来确定的,即,与NSS复合物相比,更紧密堆积的界面形式。另一个主要区别是NSS DBD弯曲的DNA几乎完全由结合能的静电成分驱动,而SS DBD弯曲的DNA主要由非静电成分驱动。这两类HMG盒的基本延伸在DNA结合和弯曲中起着相似的作用,仅与DNA发生静电相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号