...
首页> 外文期刊>Journal of Muscle Research and Cell Motility >Force transients and minimum cross-bridge models in muscular contraction.
【24h】

Force transients and minimum cross-bridge models in muscular contraction.

机译:肌肉收缩中的力瞬变和最小跨桥模型。

获取原文
获取原文并翻译 | 示例

摘要

Two- and three-state cross-bridge models are considered and examined with respect to their ability to predict three distinct phases of the force transients that occur in response to step change in muscle fiber length. Particular attention is paid to satisfying the Le Chatelier-Brown Principle. This analysis shows that the two-state model can account for phases 1 and 2 of a force transient, but is barely adequate to account for phase 3 (delayed force) unless a stretch results in a sudden increase in the number of cross-bridges in the detached state. The three-state model [Formula: see text] makes it possible to account for all three phases if we assume that the [Formula: see text] transition is fast (corresponding to phase 2), the [Formula: see text] transition is of intermediate speed (corresponding to phase 3), and the [Formula: see text] transition is slow; in such a scenario, states A and C can support or generate force (high force states) but state B cannot (detached, or low-force state). This model involves at least one ratchet mechanism. In this model, force can be generated by either of two transitions: [Formula: see text] or [Formula: see text]. To determine which of these is the major force-generating step that consumes ATP and transduces energy, we examine the effects of ATP, ADP, and phosphate (Pi) on force transients. In doing so, we demonstrate that the fast transition (phase 2) is associated with the nucleotide-binding step, and that the intermediate-speed transition (phase 3) is associated with the Pi-release step. To account for all the effects of ligands, it is necessary to expand the three-state model into a six-state model that includes three ligand-bound states. The slowest phase of a force transient (phase 4) cannot be explained by any of the models described unless an additional mechanism is introduced. Here we suggest a role of series compliance to account for this phase, and propose a model that correlates the slowest step of the cross-bridge cycle (transition [Formula: see text]) to: phase 4 of step analysis, the rate constant k (tr) of the quick-release and restretch experiment, and the rate constant k (act) for force development time course following Ca(2+) activation.
机译:考虑并检查了两态和三态跨桥模型的能力,以预测其响应于肌肉纤维长度的阶跃变化而发生的力瞬变的三个不同阶段。特别注意满足Le Chatelier-Brown原理。该分析表明,两种状态的模型可以解释力瞬变的阶段1和2,但几乎不能解释阶段3(延迟的力),除非拉伸导致桥的跨桥数量突然增加。分离状态。如果我们假设[公式:参见文本]转换快速(对应于阶段2),则三态模型[公式:参见文本]可以考虑所有三个阶段,而[公式:参见文本]转换为中等速度(对应于阶段3),并且[公式:参见文本]转换缓慢;在这种情况下,状态A和C可以支撑或产生作用力(高作用力状态),而状态B则不能(分离或低作用力状态)。该模型涉及至少一个棘轮机构。在此模型中,可以通过以下两种转换之一来生成力:[公式:参见文本]或[公式:参见文本]。为了确定其中哪一个是消耗ATP并转换能量的主要力生成步骤,我们检查了ATP,ADP和磷酸盐(Pi)对力瞬变的影响。通过这样做,我们证明了快速转变(阶段2)与核苷酸结合步骤有关,而中速转变(阶段3)与Pi释放步骤有关。为了考虑配体的所有作用,有必要将三态模型扩展为包含三个配体结合态的六态模型。除非引入其他机制,否则任何描述的模型都无法解释力瞬变的最慢阶段(阶段4)。在这里,我们建议序列顺应性在此阶段中的作用,并提出一个模型,该模型将跨桥循环的最慢步骤(过渡[公式:参见文本])与步骤分析的第4阶段相关,速率常数k释放和再拉伸实验的时间(tr),以及Ca(2+)激活后力发展时间的速率常数k(act)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号