...
首页> 外文期刊>Journal of Molecular Liquids >Simple analytic equations of state for the generalized hard-core Mie(α, β) and Mie(α, β) fluids from perturbation theory
【24h】

Simple analytic equations of state for the generalized hard-core Mie(α, β) and Mie(α, β) fluids from perturbation theory

机译:基于扰动理论的广义硬核Mie(α,β)和Mie(α,β)流体状态的简单解析方程

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract New, simple and analytic perturbation theory equations of state for generalized hard-core Mie HCMie(α, β) and Mie(α, β) fluids are proposed. They are based on the second-order Barker-Henderson perturbation theory in the macroscopic compressibility approximation and the new analytical expression of the radial distribution function of hard spheres, g_(HS)(r), developed by Sun in terms of a polynomial expansion of base functions adapted to the square-well and Sutherland potentials [Can. J. Phys. 83 (2005) 55], the combination of which yields the HCMie(α, β) and Mie(α, β) functions. The compressibility factors, the residual internal energies and the radial distribution function at contact with the hard core are then obtained from this equation of state for the HCLJ(12, 6) potential, which is a particular case of the HCMie(α, β) potentials with α = 12 and β = 6. The results are in good agreement with the existing Monte Carlo (MC) simulation data, and compare favorably with those obtained from five other equations of state, three of which contain numerical coefficients fitted to the Monte Carlo results. For the Mie(α, 6) (α = 8, 10, 12), fluids, the present equation of state is a good representation of recent molecular dynamics (MD) simulations of the pressure and internal energy. It is more accurate than the statistical associating fluid theory of variable range (SAFT-VR Mie(n, 6)) theory for n = 8, and 10, while for n = 12 the SAFT-VR theory is best. For the Mie(14, 7) fluid, which is outside the range of application of the SAFT-VR theory, the results for the pressure are in good agreement with the analytical equation of state obtained from the MC simulation data.
机译:摘要提出了广义的硬核Mie HCMie(α,β)和Mie(α,β)流体的状态的新的,简单的解析扰动理论方程。它们基于宏观压缩率近似的二阶Barker-Henderson微扰理论,以及Sun根据多项式展开式开发的硬球体径向分布函数g_(HS)(r)的新解析表达式。适应方阱和Sutherland势的基本函数[Can。 J.物理参见,例如,J.Med.Chem.83(2005)55],其组合产生HCMie(α,β)和Mie(α,β)功能。然后从该状态方程中获得HCLJ(12,6)势的状态系数,得出与硬核接触时的可压缩系数,残余内能和径向分布函数,这是HCMie(α,β)的特殊情况α= 12和β= 6的势能。结果与现有的Monte Carlo(MC)模拟数据非常吻合,并且与从其他五个状态方程获得的结果(与其中三个包含适合于Monte的数值系数)相比具有优势。卡洛结果。对于Mie(α,6)(α= 8,10,12)流体,当前状态方程很好地表示了压力和内部能量的最新分子动力学(MD)模拟。对于n = 8和10,它比可变范围的统计缔合流体理论(SAFT-VR Mie(n,6))理论更准确,而对于n = 12,SAFT-VR理论是最佳的。对于SAFT-VR理论应用范围以外的Mie(14,7)流体,压力结果与从MC模拟数据获得的状态解析方程非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号