首页> 外文期刊>Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology >Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols
【24h】

Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

机译:模拟由亚微米溶液气溶胶干燥形成的纳米颗粒的大小和结构

获取原文
获取原文并翻译 | 示例
       

摘要

Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions.
机译:已经探索了在受控条件下干燥亚微米溶液气溶胶以制备用于药物递送应用的纳米颗粒。建立了溶液液滴蒸发的计算模型,以研究液滴内部溶质梯度的演变,并预测沉淀纳米粒子的大小和壳厚度。该模型将蒸发视为涉及液滴收缩和壳生长的两阶段过程。证实了液滴的蒸发速率控制着液滴内溶质的分布以及所产生的颗粒结构(固体或壳型)。在较高的气体温度下,由于高蒸发速率而在滴液表面附近迅速积聚了溶质,因此可以尽早获得临界的过饱和溶解度和较陡的溶质梯度,这有利于形成较大的壳型颗粒。在较低的气体温度下,表明形成了较小的固体纳米颗粒。计算的大小和壳厚度与实验制备的脂质纳米颗粒非常吻合。该研究表明,沉淀的纳米颗粒的固体或壳结构受蒸发速率的强烈影响,而前体溶液中的初始溶质浓度和雾化的液滴尺寸会影响壳的厚度。对于所考虑的气体温度,蒸发冷却导致液滴温度低于脂质溶质的熔点。因此,我们得出结论,可以通过选择气溶胶加工条件来控制蒸发速率,从而控制适于药物传递的热不稳定性前体材料的纳米粒度和结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号