首页> 外文期刊>Journal of magnetic resonance >Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy
【24h】

Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy

机译:自旋标记连续波微波功率饱和和三角非绝热快速扫描(NARS)和绝热快速通过(ARP)EPR光谱快速通过

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10(-3) to 10(-7) s in a manner that is analogous to saturation transfer spectroscopy. (C) 2015 Elsevier Inc. All rights reserved.
机译:Kittell等人介绍了非绝热快速通道(NARS)电子顺磁共振(EPR)光谱。 (2011年)作为收集纯吸收响应的通用技术。该技术已被用于提高相对于正弦磁场调制的灵敏度,增加可在近乎生理条件下测量的自旋间距离范围(Kittell等人,2012年)以及增强铜(II)光谱的光谱分辨率(Hyde et al。,2013)。在目前的工作中,该方法扩展到自旋标记的T4溶菌酶(T4L)的连续波微波功率饱和。如同在引用的论文中一样,极化磁场的快速三角扫描叠加在整个频谱的缓慢扫描上。随着三角形磁场扫描速率的增加,在经历非常缓慢的旋转扩散的样品中遇到了绝热快速通过(ARP)效应。本文报道了在绝热和非绝热快速扫描条件下的实验参数变化的结果。向前(向上)和向后(向下)三角形扫掠的比较显示了快速通过效果的良好指示。频谱转折点可以通过两种方式与转折点之间的频谱区域区分开:差分微波功率饱和和差分通过效应。在类似于常规场调制数据的NARS条件下显示了氧气可及性数据。但是,灵敏度要高得多,原则上可以在低得多的蛋白质浓度下进行实验。获得的光谱显示以类似于饱和转移光谱的方式在10(-3)到10(-7)s的旋转相关时间范围内对旋转扩散敏感。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号