...
首页> 外文期刊>Journal of magnetic resonance >An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation
【24h】

An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation

机译:NMR研究双氧引起的自旋晶格弛豫增强和化学位移扰动的起源

获取原文
获取原文并翻译 | 示例
           

摘要

Due to its depth-dependent solubility, oxygen exerts paramagnetic effects which become progressively greater toward the hydrophobic interior of micelles, and lipid bilayer membranes. This paramagnetic gradient, which is manifested as contact shift perturbations (F-19 and C-13 NMR) and spin-lattice relaxation enhancement (F-19 and H-1 NMR), has been shown to be useful for precisely determining immersion depth, membrane protein secondary structure, and overall topology of membrane proteins. We have investigated the influence of oxygen on F-19 and C-13 NMR spectra and spin-lattice relaxation rates of a semiperfluorinated detergent, (8,8,8)-trifluoro (3,3,4,4,5,5,6,6,7,7)-difluoro octylmaltoside (TFOM) in a model membrane system, to determine the dominant paramagnetic spin-lattice relaxation and shift-perturbation mechanism. Based on the ratio of paramagnetic spin-lattice relaxation rates of F-19 and directly bonded C-13 nuclei, we conclude that the dominant relaxation mechanism must be dipolar. Furthermore, the temperature dependence of oxygen-induced chemical shift perturbations in F-19 NMR spectra suggests a contact interaction is the dominant shift mechanism. The respective hyperfine coupling constants for F-19 and C-13 nuclei can then be estimated from the contact shifts <(Deltav/v(0))(19F)> and <(Deltav/v(0))(13C)>, allowing us to estimate the relative contribution of scalar and dipolar relaxation to F-19 and C-13 nuclei. We conclude that the contribution to spin-lattice relaxation front the oxygen induced paramagnetic scalar mechanism is negligible. (C) 2004 Elsevier Inc. All rights reserved.
机译:由于其与深度有关的溶解度,氧发挥了顺磁性作用,该作用朝着胶束和脂质双层膜的疏水内部逐渐增强。这种顺磁梯度表现为接触位移扰动(F-19和C-13 NMR)和自旋晶格弛豫增强(F-19和H-1 NMR),已被证明可用于精确确定浸没深度,膜蛋白的二级结构和膜蛋白的整体拓扑。我们已经研究了氧对半全氟化洗涤剂(8,8,8)-三氟(3,3,4,4,5,5,的F-19和C-13 NMR光谱和自旋晶格弛豫速率的影响) 6,6,7,7)-二氟辛基麦芽糖苷(TFOM)在模型膜系统中,以确定主要的顺磁自旋晶格弛豫和位移扰动机制。基于F-19和直接键合的C-13核的顺磁性自旋晶格弛豫速率的比率,我们得出结论,主要的弛豫机理必须是偶极的。此外,F-19 NMR光谱中氧诱导的化学位移扰动的温度依赖性表明,接触相互作用是主要的位移机理。然后可以根据接触位移<(Deltav / v(0))(19F)>和<(Deltav / v(0))(13C)>来估计F-19和C-13原子核的超精细耦合常数,使我们能够估计标量和偶极弛豫对F-19和C-13核的相对贡献。我们得出的结论是,氧引起的顺磁标量机制对自旋晶格弛豫的贡献可忽略不计。 (C)2004 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号