...
首页> 外文期刊>Journal of Mathematical Physics >A microscopic two-band model for the electron-hole asymmetry in high-T_c superconductors and reentering behavior
【24h】

A microscopic two-band model for the electron-hole asymmetry in high-T_c superconductors and reentering behavior

机译:高T_c超导体中电子空穴不对称性的微观两波段模型及再进入行为

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To our knowledge there is no rigorously analyzed microscopic model explaining the electron-hole asymmetry of the critical temperature seen in high-T_c cuprate super-conductors – at least no model not breaking artificially this symmetry. We present here a microscopic two-band model based on the structure of energetic levels of holes in CuO_2 conducting layers of cuprates. In particular, our Hamiltonian does not contain ad hoc terms implying – explicitly – different masses for electrons and holes. We prove that two energetically near-lying interacting bands can explain the electron-hole asymmetry. Indeed, we rigorously analyze the phase diagram of the model and show that the critical temperatures for fermion densities below half-filling can manifest a very different behavior as compared to the case of densities above half-filling. This fact results from the inter-band interaction and intra-band Coulomb repulsion in interplay with thermal fluctuations between two energetic levels. So, if the energy difference between bands is too big (as compared to the energy scale defined by the critical temperatures of superconductivity) then the asymmetry disappears. Moreover, the critical temperature turns out to be a non-monotonic function of the fermion density and the phase diagram of our model shows "superconducting domes" as in high-T_c cuprate superconductors. This explains why the maximal critical temperature is attained at donor densities away from the maximal one. Outside the superconducting phase and for fermion densities near half-filling the thermodynamics governed by our Hamiltonian corresponds, as in real high-T_c materials, to a Mott-insulating phase. The nature of the inter-band interaction can be electrostatic (screened Coulomb interaction), magnetic (for instance, some Heisenberg-type one-site spin–spin interaction), or a mixture of both. If the inter-band interaction is predominately magnetic then – additionally to the electron-hole asymmetry – we observe a reentering behavior meaning that the superconducting phase can only occur in a finite interval of temperatures. This phenomenon is rather rare, but has also been observed in the so-called magnetic superconductors. The mathematical results here are direct consequences of [J.-B. Bru and W. de Siqueira Pedra, Rev. Math. Phys. 22, 233 (2010)] which is reviewed in the introduction.
机译:据我们所知,没有严格分析的微观模型可以解释高T_c铜酸盐超导体中临界温度的电子-空穴不对称性-至少没有模型可以人为地破坏这种对称性。我们在此介绍一种基于铜的CuO_2导电层中空穴的高能级结构的微观两波段模型。特别是,我们的哈密顿量不包含特别的含义,即明确暗示电子和空穴的质量不同。我们证明了两个能量接近的相互作用带可以解释电子-空穴的不对称性。确实,我们严格地分析了模型的相图,结果表明,与半填充以上的密度相比,半填充以下的费米密度的临界温度可以表现出非常不同的行为。这一事实是由于带内相互作用和带内库仑排斥与两个高能级之间的热波动相互作用而产生的。因此,如果能带之间的能量差太大(与超导临界温度所定义的能级相比),则不对称性就会消失。而且,临界温度证明是费米子密度的非单调函数,并且我们模型的相图显示了像高T_c铜酸盐超导体中的“超导圆顶”。这解释了为什么在远离最大供体的供体密度下达到最大临界温度。在超导相之外,并且对于费米子密度接近一半的填充,像在真正的高T_c材料中一样,由我们的哈密顿量控制的热力学对应于莫特绝缘相。带间相互作用的性质可以是静电的(屏蔽库仑相互作用),磁性的(例如,某些海森堡型单点自旋-自旋相互作用)或两者的混合。如果带间相互作用主要是磁性的,那么除了电子-空穴不对称之外,我们还会观察到重新进入的行为,这意味着超导相只能在有限的温度范围内发生。这种现象相当罕见,但在所谓的磁性超导体中也已观察到。这里的数学结果是[J.-B. Bru和W. de Siqueira Pedra,Rev。Math。物理22,233(2010)]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号