首页> 外文期刊>Journal of Mathematical Biology >The rainbow bridge: Hamiltonian limits and resonance in predator-prey dynamics.
【24h】

The rainbow bridge: Hamiltonian limits and resonance in predator-prey dynamics.

机译:彩虹桥:哈密顿极限与食肉动物-猎物动力学的共振。

获取原文
获取原文并翻译 | 示例
           

摘要

In the presence of seasonal forcing, the intricate topology of non-integrable Hamiltonian predator-prey models is shown to exercise profound effects on the dynamics and bifurcation structure of more realistic schemes which do not admit a Hamiltonian formulation. The demonstration of this fact is accomplished by writing the more general models as perturbations of a Hamiltonian limit, ℋ, in which are contained infinite numbers of periodic, quasiperiodic and chaotic motions. From ℋ, there emanates a surface, Gamma, of Nejmark-Sacker bifurcations whereby the annual oscillations induced by seasonality are destabilized. Connecting Gamma and ℋ is a bridge of resonance horns within which invariant motions of the Hamiltonian case persist. The boundaries of the resonance horns are curves of tangent (saddle-node) bifurcations corresponding to subharmonics of the yearly cycle. Associated with each horn is a rotation number which determines the dominant frequency, or "color", of attractors within the horn. When viewed through the necessarily coarse filter of ecological data acquisition, and regardless of their detailed topology, these attractors are often indistinguishable from multi-annual cycles. Because the tips of the horns line up monotonically along Gamma, it further follows that the distribution of observable periods in systems subject to fluctuating parameter values induced, for example, by year-to-year variations in the climate, will often exhibit a discernible central tendency. In short, the bifurcation structure is consistent with the observation of multi-annual cycles in Nature. Fundamentally, this is a consequence of the fact that the bridge between ℋ and Gamma is a rainbow bridge. While the present analysis is principally concerned with the two species case (one predator and one prey), Hamiltonian limits are also observed in other ecological contexts: 2n-species (n predators, n prey) systems and periodically-forced three level food chain models. Hamiltonian limits may thus be common in models involving the destruction of one species by another. Given the oft-commented upon structural instability of Hamiltonian systems and the corresponding lack of regard in which they are held as useful caricatures of ecological interactions, the pivotal role assigned here to Hamiltonian limits constitutes a qualitative break with the conventional wisdom.
机译:在存在季节性强迫的情况下,不可整合的哈密顿捕食者-捕食者模型的复杂拓扑结构显示出对更现实的方案的动力学和分支结构产生深远的影响,这些方案不允许采用哈密顿式的公式表示。通过写出更一般的模型作为汉密尔顿极限的扰动来完成这一事实的证明,其中包含无限数量的周期运动,拟周期运动和混沌运动。从ℋ发出Nejmark-Sacker分叉的Gamma表面,从而使季节性引起的年振荡不稳定。连接Gamma和ℋ是共振号角的桥梁,哈密顿量不变的运动持续存在其中。共振角的边界是对应于年周期次谐波的切线(鞍形节点)分支曲线。与每个号筒相关联的是旋转数,其确定号筒内吸引子的主要频率或“颜色”。通过必要的粗略的生态数据采集过滤器进行查看,无论其详细的拓扑结构如何,这些吸引子通常都与多年周期没有区别。由于角的尖端沿Gamma单调排列,因此进一步得出,受气候变化(例如,逐年变化)引起的参数值波动的系统中的可观察周期分布通常会表现出明显的中心趋势。简而言之,分叉结构与自然界中多年循环的观察一致。从根本上说,这是ℋ之间的桥梁。伽玛是一座彩虹桥。虽然目前的分析主要涉及两种物种的情况(一个捕食者和一个猎物),但在其他生态环境中也观察到了哈密顿极限:2n种(n个捕食者,n个猎物)系统和周期性强迫的三级食物链模型。因此,在涉及一个物种被另一物种破坏的模型中,哈密顿极限可能很常见。鉴于人们经常评论汉密尔顿体系的结构不稳定性,并缺乏相应的重视,认为它们被认为是生态相互作用的有用讽刺,因此,此处赋予汉密尔顿极限的关键作用与传统观点形成了质的突破。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号