首页> 外文期刊>Journal of Mathematical Biology >RNA secondary structures in a polymer-zeta model how foldings should be shaped for sparsification to establish a linear speedup
【24h】

RNA secondary structures in a polymer-zeta model how foldings should be shaped for sparsification to establish a linear speedup

机译:聚合物-zeta中的RNA二级结构可模拟应如何形成折叠以稀疏化以建立线性加速

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Various tools used to predict the secondary structure for a given RNA sequence are based on dynamic programming used to compute a conformation of minimum free energy. For structures without pseudoknots, a worst-case runtime proportional to , with being the length of the sequence, results since a table of dimension has to be filled in while a single entry gives rise to a linear computational effort. However, it was recently observed that reformulating the corresponding dynamic programming recursion together with the bookkeeping of potential folding alternatives (a technique called sparsification) may reduce the runtime to on average, assuming that nucleotides of distance form a hydrogen bond (i.e. are paired) with probability for some constants . The latter is called the polymer-zeta model and plays a crucial role in speeding up the above mentioned algorithm. In this paper we discuss the application of the polymer-zeta property for the analysis of sparsification, showing that it must be applied conditionally on first and last positions to pair. Afterwards, we will investigate the combinatorics of RNA secondary structures assuming that the corresponding conditional probabilities behave according to a polymer-zeta probability model. We show that even if some of the structural parameters exhibit an almost realistic behavior on average, the expected shape of a folding in that model must be assumed to highly differ from those observed in nature. More precisely, we prove our polymer-zeta model to be appropriate for mRNA molecules but to fail in connection with almost every other family of RNA. Those findings explain the huge speedup of the dynamic programming algorithm observed empirically by Wexler et al. when applying sparsification in connection with mRNA data.
机译:用于预测给定RNA序列二级结构的各种工具都是基于用于计算最小自由能构象的​​动态编程的。对于没有假结的结构,由于序列表的长度必须与维成正比,因此会导致最坏情况的运行时间,这是因为必须填写维表,而单个条目会导致线性计算工作。然而,最近观察到,假设距离的核苷酸形成氢键(即成对),则将相应的动态编程递归与潜在折叠替代方案的记账一起重新整理(一种称为稀疏化的技术)可将运行时间平均缩短至平均。一些常数的概率。后者称为聚合物-zeta模型,在加速上述算法中起着至关重要的作用。在本文中,我们讨论了聚合物-zeta性质在稀疏性分析中的应用,表明必须有条件地将其应用于配对的第一个和最后一个位置。然后,我们将假设相应的条件概率根据聚合物-zeta概率模型运行,从而研究RNA二级结构的组合。我们表明,即使某些结构参数平均表现出几乎逼真的行为,也必须假定该模型中折叠的预期形状与自然观察到的高度不同。更准确地说,我们证明了我们的聚合物-zeta模型适用于mRNA分子,但几乎无法与其他所有RNA家族连接。这些发现解释了由Wexler等人凭经验观察到的动态编程算法的巨大加速。在对mRNA数据进行稀疏处理时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号