首页> 外文期刊>Journal of Low Power Electronics >Achieving High Efficiency Under Micro-Watt Loads with Switching Buck DC-DC Converters
【24h】

Achieving High Efficiency Under Micro-Watt Loads with Switching Buck DC-DC Converters

机译:利用开关降压DC-DC转换器在微瓦负载下实现高效率

获取原文
获取原文并翻译 | 示例
           

摘要

The present-day and potential benefits of highly integrated miniaturized applications like wireless micro-sensors and biomedical implants in military, space, medical, and commercial markets fuel the demand for self-sustaining micro-electronic systems. Extending operational life to practical levels in such volume-constrained environments is difficult because space limits energy and power. Although switching dc-dc converters have been frequently used in power systems to supply and condition power efficiently, their quiescent and switching losses often render them inefficient at lighter loads, where micro-scale applications reside. Arbitrarily decreasing switching frequency with reductions in load, unfortunately, does not guarantee maximum efficiency because, for example, doing so in discontinuous-conduction mode also increases conduction losses. This paper therefore explores how power losses in switching dc-dc converters relate to load, switching frequency, and other design variables under extreme light loading conditions and ascertains how to manage them to achieve the highest possible efficiency across a micro-watt load. To that end, the paper discusses, analyzes, verifies, and graphically illustrates when and how each of the power-consuming mechanisms dominate efficiency performance. The results show that, after mode-hopping from continuous to discontinuous conduction when the load decreases below half the inductor ripple current, the switching frequency (and quiescent current) should decrease linearly with load at an optimal (derived) rate to balance the losses (and only use just enough quiescent current to sustain the needed bandwidth) and yield maximum efficiency results (e.g., 85-95%) across the entire micro-power range. Simulations show that a constant peak-current control converter (as would a hysteretic converter) with the optimal frequency-load ratio achieves over 86% efficiency across a 50-500 μA load range.
机译:高度集成的微型化应用(如无线微传感器和生物医学植入物在军事,航天,医疗和商业市场中的应用)的当今和潜在优势推动了对自持式微电子系统的需求。在这样的体积受限的环境中,很难将使用寿命延长到实际水平,因为空间会限制能量和功率。尽管开关dc-dc转换器已广泛用于电力系统中以有效地供电和调节功率,但它们的静态和开关损耗通常使它们在微型应用的较轻负载下效率低下。不幸的是,随负载减小而任意降低开关频率并不能保证最大效率,因为例如在不连续导通模式下这样做也会增加导通损耗。因此,本文探讨了在极端轻负载条件下,开关式DC-DC转换器的功率损耗如何与负载,开关频率和其他设计变量相关,并确定了如何管理它们以在微瓦负载下实现最高可能的效率。为此,本文讨论,分析,验证并以图形方式说明了每种功耗机制何时以及如何支配效率绩效。结果表明,当负载下降到电感纹波电流的一半以下时,从连续导通到不连续导通的模式跳跃之后,开关频率(和静态电流)应随负载以最佳(推导)速率线性降低,以平衡损耗(并且仅使用足够的静态电流来维持所需的带宽),并在整个微功率范围内产生最大效率结果(例如85-95%)。仿真表明,具有最佳频率负载比的恒定峰值电流控制转换器(与磁滞转换器一样)在50-500μA的负载范围内可实现86%以上的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号