首页> 外文期刊>Journal of loss prevention in the process industries >Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in particle-cloud hydrogen flames
【24h】

Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in particle-cloud hydrogen flames

机译:辐射热传递对粒子云氢火焰中火焰加速和爆轰的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The current work examines regimes of the hydrogen oxygen flame propagation and ignition of mixtures heated by radiation emitted from the flame. The gaseous phase is assumed to be transparent for the radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. It is shown that depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the mixture ahead of the flame can be either the increase of the flame velocity for uniformly dispersed particles or ignition either new deflagration or detonation ahead of the original flame via the Zel'dovich gradient mechanism in the case of a layered particle-gas cloud deposits. In the latter case the ignited combustion regime depends on the radiation absorption length and correspondingly on the steepness of the formed temperature gradient in the preignition zone that can be treated independently of the primary flame. The impact of radiation heat transfer in a particle-laden flame is of paramount importance for better risk assessment and represents a route for understanding of dust explosion origin. (C) 2015 Elsevier Ltd. All rights reserved.
机译:目前的工作研究氢氧火焰传播和燃烧混合物的方式,这些混合物被火焰发射的辐射加热。假定气相对辐射是透明的,而在火焰之前的尘埃云悬浮颗粒吸收并重新释放辐射。然后,被颗粒吸收的辐射热通过与周围未反应的气相传导而损失掉,从而使气相温度滞后于颗粒的温度。直接数值模拟解决了两相气体动力学随时间变化的方程的完整系统,并提供了通过粉尘云传播的平面火焰的详细化学动力学信息。结果表明,取决于分散颗粒的空间分布和辐射吸收长度的值,混合物在火焰之前进行辐射预热的结果可能是均匀分散颗粒的火焰速度增加或着火如果是分层的气雾云沉积,则通过Zel'dovich梯度机制在原始火焰之前进行新的爆燃或起爆。在后一种情况下,点燃的燃烧方式取决于辐射吸收长度,并且相应地取决于可以独立于一次火焰处理的,在提前点火区内形成的温度梯度的陡度。辐射热传递在充满粒子的火焰中的影响对于更好地进行风险评估至关重要,是理解粉尘爆炸起源的途径。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号